These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 22432862)
1. Insight into the molecular basis of aromatic polyketide cyclization: crystal structure and in vitro characterization of WhiE-ORFVI. Lee MY; Ames BD; Tsai SC Biochemistry; 2012 Apr; 51(14):3079-91. PubMed ID: 22432862 [TBL] [Abstract][Full Text] [Related]
2. Structural and biochemical characterization of ZhuI aromatase/cyclase from the R1128 polyketide pathway. Ames BD; Lee MY; Moody C; Zhang W; Tang Y; Tsai SC Biochemistry; 2011 Oct; 50(39):8392-406. PubMed ID: 21870821 [TBL] [Abstract][Full Text] [Related]
3. Structural and functional analysis of two di-domain aromatase/cyclases from type II polyketide synthases. Caldara-Festin G; Jackson DR; Barajas JF; Valentic TR; Patel AB; Aguilar S; Nguyen M; Vo M; Khanna A; Sasaki E; Liu HW; Tsai SC Proc Natl Acad Sci U S A; 2015 Dec; 112(50):E6844-51. PubMed ID: 26631750 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure and functional analysis of tetracenomycin ARO/CYC: implications for cyclization specificity of aromatic polyketides. Ames BD; Korman TP; Zhang W; Smith P; Vu T; Tang Y; Tsai SC Proc Natl Acad Sci U S A; 2008 Apr; 105(14):5349-54. PubMed ID: 18388203 [TBL] [Abstract][Full Text] [Related]
5. Iterative type II polyketide synthases, cyclases and ketoreductases exhibit context-dependent behavior in the biosynthesis of linear and angular decapolyketides. Meurer G; Gerlitz M; Wendt-Pienkowski E; Vining LC; Rohr J; Hutchinson CR Chem Biol; 1997 Jun; 4(6):433-43. PubMed ID: 9224566 [TBL] [Abstract][Full Text] [Related]
6. An unusual aromatase/cyclase programs the formation of the phenyldimethylanthrone framework in anthrabenzoxocinones and fasamycin. Jiang K; Chen X; Yan X; Li G; Lin Z; Deng Z; Luo S; Qu X Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2321722121. PubMed ID: 38446858 [TBL] [Abstract][Full Text] [Related]
7. Engineered biosynthesis of novel polyketides: properties of the whiE aromatase/cyclase. Alvarez MA; Fu H; Khosla C; Hopwood DA; Bailey JE Nat Biotechnol; 1996 Mar; 14(3):335-8. PubMed ID: 9630896 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Crawford JM; Korman TP; Labonte JW; Vagstad AL; Hill EA; Kamari-Bidkorpeh O; Tsai SC; Townsend CA Nature; 2009 Oct; 461(7267):1139-43. PubMed ID: 19847268 [TBL] [Abstract][Full Text] [Related]
9. Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes. Shen Y; Yoon P; Yu TW; Floss HG; Hopwood D; Moore BS Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3622-7. PubMed ID: 10097087 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates. Austin MB; Izumikawa M; Bowman ME; Udwary DW; Ferrer JL; Moore BS; Noel JP J Biol Chem; 2004 Oct; 279(43):45162-74. PubMed ID: 15265863 [TBL] [Abstract][Full Text] [Related]
11. A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides. Funa N; Funabashi M; Yoshimura E; Horinouchi S J Biol Chem; 2005 Apr; 280(15):14514-23. PubMed ID: 15701630 [TBL] [Abstract][Full Text] [Related]
12. Rational reprogramming of fungal polyketide first-ring cyclization. Xu Y; Zhou T; Zhou Z; Su S; Roberts SA; Montfort WR; Zeng J; Chen M; Zhang W; Lin M; Zhan J; Molnár I Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5398-403. PubMed ID: 23509261 [TBL] [Abstract][Full Text] [Related]
13. Domain analysis of the molecular recognition features of aromatic polyketide synthase subunits. Zawada RJ; Khosla C J Biol Chem; 1997 Jun; 272(26):16184-8. PubMed ID: 9195917 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for cyclization specificity of two Azotobacter type III polyketide synthases: a single amino acid substitution reverses their cyclization specificity. Satou R; Miyanaga A; Ozawa H; Funa N; Katsuyama Y; Miyazono KI; Tanokura M; Ohnishi Y; Horinouchi S J Biol Chem; 2013 Nov; 288(47):34146-34157. PubMed ID: 24100027 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa. Yang X; Matsui T; Kodama T; Mori T; Zhou X; Taura F; Noguchi H; Abe I; Morita H FEBS J; 2016 Mar; 283(6):1088-106. PubMed ID: 26783002 [TBL] [Abstract][Full Text] [Related]
16. Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases. Barajas JF; Shakya G; Moreno G; Rivera H; Jackson DR; Topper CL; Vagstad AL; La Clair JJ; Townsend CA; Burkart MD; Tsai SC Proc Natl Acad Sci U S A; 2017 May; 114(21):E4142-E4148. PubMed ID: 28484029 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases. Wang J; Zhang R; Chen X; Sun X; Yan Y; Shen X; Yuan Q Microb Cell Fact; 2020 May; 19(1):110. PubMed ID: 32448179 [TBL] [Abstract][Full Text] [Related]
18. Ectopic expression of the Streptomyces coelicolor whiE genes for polyketide spore pigment synthesis and their interaction with the act genes for actinorhodin biosynthesis. Yu TW; Hopwood DA Microbiology (Reading); 1995 Nov; 141 ( Pt 11)():2779-91. PubMed ID: 8535506 [TBL] [Abstract][Full Text] [Related]
19. Engineered biosynthesis of regioselectively modified aromatic polyketides using bimodular polyketide synthases. Tang Y; Lee TS; Khosla C PLoS Biol; 2004 Feb; 2(2):E31. PubMed ID: 14966533 [TBL] [Abstract][Full Text] [Related]
20. Bifunctionality of ActIV as a Cyclase-Thioesterase Revealed by in Vitro Reconstitution of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2). Taguchi T; Awakawa T; Nishihara Y; Kawamura M; Ohnishi Y; Ichinose K Chembiochem; 2017 Feb; 18(3):316-323. PubMed ID: 27897367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]