BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 22432922)

  • 21. Determining the most suitable costal cartilage level for rhinoplasty: an experimental study.
    Alkan Z; Acioglu E; Yigit O; Bekem A; Azizli E; Unal A; Sahin F
    Otolaryngol Head Neck Surg; 2012 Mar; 146(3):377-81. PubMed ID: 22063734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneous nanomechanical properties of superficial and zonal regions of articular cartilage of the rabbit proximal radius condyle by atomic force microscopy.
    Tomkoria S; Patel RV; Mao JJ
    Med Eng Phys; 2004 Dec; 26(10):815-22. PubMed ID: 15567698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression.
    Li LP; Herzog W; Korhonen RK; Jurvelin JS
    Med Eng Phys; 2005 Jan; 27(1):51-7. PubMed ID: 15604004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of indenter size on elastic modulus of cartilage measured by indentation.
    Simha NK; Jin H; Hall ML; Chiravarambath S; Lewis JL
    J Biomech Eng; 2007 Oct; 129(5):767-75. PubMed ID: 17887903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips.
    Rico F; Roca-Cusachs P; Gavara N; Farré R; Rotger M; Navajas D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021914. PubMed ID: 16196611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelastic properties of human tympanic membrane.
    Cheng T; Dai C; Gan RZ
    Ann Biomed Eng; 2007 Feb; 35(2):305-14. PubMed ID: 17160465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale study of cartilage surfaces using atomic force microscopy.
    Wang M; Peng Z; Watson JA; Watson GS; Yin L
    Proc Inst Mech Eng H; 2012 Dec; 226(12):899-910. PubMed ID: 23636953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of cartilage stress-relaxation models in unconfined compression: QLV and stretched exponential in combination with fluid flow.
    June RK; Fyhrie DP
    Comput Methods Biomech Biomed Engin; 2013; 16(5):565-76. PubMed ID: 22149471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unconfined creep compression of chondrocytes.
    Leipzig ND; Athanasiou KA
    J Biomech; 2005 Jan; 38(1):77-85. PubMed ID: 15519342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The short-term compressive properties of adult human articular cartilage.
    Bader DL; Kempson GE
    Biomed Mater Eng; 1994; 4(3):245-56. PubMed ID: 7950872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis.
    Lu XL; Wan LQ; Guo XE; Mow VC
    J Biomech; 2010 Mar; 43(4):673-9. PubMed ID: 19896670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Behavior of human rib and patella cartilage].
    Hendel V; Lenk C
    Beitr Orthop Traumatol; 1989 Jun; 36(6):248-58. PubMed ID: 2764867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.
    Van Loocke M; Lyons CG; Simms CK
    J Biomech; 2008; 41(7):1555-66. PubMed ID: 18396290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage.
    Trickey WR; Lee GM; Guilak F
    J Orthop Res; 2000 Nov; 18(6):891-8. PubMed ID: 11192248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanics of articular cartilage and determination of material properties.
    Lu XL; Mow VC
    Med Sci Sports Exerc; 2008 Feb; 40(2):193-9. PubMed ID: 18202585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quasi-linear viscoelastic characterization of human hip ligaments.
    Kemper AR; McNally C; Smith B; Duma SM
    Biomed Sci Instrum; 2007; 43():324-9. PubMed ID: 17487102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A general approach for the microrheology of cancer cells by atomic force microscopy.
    Wang B; Lançon P; Bienvenu C; Vierling P; Di Giorgio C; Bossis G
    Micron; 2013 Jan; 44():287-97. PubMed ID: 22951283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea.
    Trabelsi O; del Palomar AP; López-Villalobos JL; Ginel A; Doblaré M
    Med Eng Phys; 2010 Jan; 32(1):76-82. PubMed ID: 19926513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.