BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 22433571)

  • 1. Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV.
    Chen CY; Patrick MJ; Corti P; Kowalski W; Roman BL; Pekkan K
    Biorheology; 2011; 48(5):305-21. PubMed ID: 22433571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cell-and-plasma numerical model reveals hemodynamic stress and flow adaptation in zebrafish microvessels after morphological alteration.
    Maung Ye SS; Phng LK
    PLoS Comput Biol; 2023 Dec; 19(12):e1011665. PubMed ID: 38048371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth and hemodynamics after early embryonic aortic arch occlusion.
    Lindsey SE; Menon PG; Kowalski WJ; Shekhar A; Yalcin HC; Nishimura N; Schaffer CB; Butcher JT; Pekkan K
    Biomech Model Mechanobiol; 2015 Aug; 14(4):735-51. PubMed ID: 25416845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association between erythrocyte dynamics and vessel remodelling in developmental vascular networks.
    Zhou Q; Perovic T; Fechner I; Edgar LT; Hoskins PR; Gerhardt H; Krüger T; Bernabeu MO
    J R Soc Interface; 2021 Jun; 18(179):20210113. PubMed ID: 34157895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiogenic Microvascular Wall Shear Stress Patterns Revealed Through Three-dimensional Red Blood Cell Resolved Modeling.
    Hossain MMN; Hu NW; Abdelhamid M; Singh S; Murfee WL; Balogh P
    Function (Oxf); 2023; 4(6):zqad046. PubMed ID: 37753184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling.
    Vedula V; Lee J; Xu H; Kuo CJ; Hsiai TK; Marsden AL
    PLoS Comput Biol; 2017 Oct; 13(10):e1005828. PubMed ID: 29084212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamic regulation allows stable growth of microvascular networks.
    Qi Y; Chang SS; Wang Y; Chen C; Baek KI; Hsiai T; Roper M
    Proc Natl Acad Sci U S A; 2024 Feb; 121(9):e2310993121. PubMed ID: 38386707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Analysis of the Smooth Muscle Wall Phenotype of the Pharyngeal Arch Arteries During Their Reorganization into the Great Vessels and Its Association with Hemodynamics.
    Ryvlin J; Lindsey SE; Butcher JT
    Anat Rec (Hoboken); 2019 Jan; 302(1):153-162. PubMed ID: 30312026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network.
    Baek KI; Chang SS; Chang CC; Roustaei M; Ding Y; Wang Y; Chen J; O'Donnell R; Chen H; Ashby JW; Xu X; Mack JJ; Cavallero S; Roper M; Hsiai TK
    Front Cardiovasc Med; 2022; 9():841101. PubMed ID: 35369301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulling on my heartstrings: mechanotransduction in cardiac development and function.
    McCormick ME; Tzima E
    Curr Opin Hematol; 2016 May; 23(3):235-42. PubMed ID: 26906028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of berberine on angiogenesis and blood flow hemodynamics using zebrafish model.
    Nathan J; Shameera R; Devarajan N; Perumal E
    J Appl Toxicol; 2024 Feb; 44(2):165-174. PubMed ID: 37615217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of blood flow in vessel remodeling and its regulatory mechanism during developmental angiogenesis.
    Wen L; Yan W; Zhu L; Tang C; Wang G
    Cell Mol Life Sci; 2023 May; 80(6):162. PubMed ID: 37221410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting capillary vessel network hemodynamics in silico by machine learning.
    Ebrahimi S; Bagchi P
    PNAS Nexus; 2024 Feb; 3(2):pgae043. PubMed ID: 38725529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-particle image velocimetry for velocity profile measurements of micro blood flows.
    Pitts KL; Fenech M
    J Vis Exp; 2013 Apr; (74):e50314. PubMed ID: 23644696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying blood flow dynamics during cardiac development: demystifying computational methods.
    Courchaine K; Rugonyi S
    Philos Trans R Soc Lond B Biol Sci; 2018 Sep; 373(1759):. PubMed ID: 30249779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development.
    Träber N; Uhlmann K; Girardo S; Kesavan G; Wagner K; Friedrichs J; Goswami R; Bai K; Brand M; Werner C; Balzani D; Guck J
    Sci Rep; 2019 Nov; 9(1):17031. PubMed ID: 31745109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiogenesis Assay for Live and Fixed Zebrafish Embryos/Larvae.
    Vinoth S; Balasubramanian S; Perumal E; Santhakumar K
    Methods Mol Biol; 2024; 2753():377-384. PubMed ID: 38285352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better.
    Lee TR; Choi M; Kopacz AM; Yun SH; Liu WK; Decuzzi P
    Sci Rep; 2013; 3():2079. PubMed ID: 23801070
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Lambert LM; Pipinos II; Baxter BT; Chatzizisis YS; Ryu SJ; Leighton RI; Wei T
    Biomicrofluidics; 2018 Nov; 12(6):064101. PubMed ID: 30473738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnitude and significance of the peak of early embryonic mortality.
    Chen Q; Di Z; García Roger EM; Li H; Richmond P; Roehner BM
    J Biol Phys; 2020 Sep; 46(3):233-251. PubMed ID: 32803624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.