These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22433571)

  • 41. In vivo three-dimensional MR wall shear stress estimation in ascending aortic dilatation.
    Bieging ET; Frydrychowicz A; Wentland A; Landgraf BR; Johnson KM; Wieben O; François CJ
    J Magn Reson Imaging; 2011 Mar; 33(3):589-97. PubMed ID: 21563242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry.
    DiCarlo AL; Holdsworth DW; Poepping TL
    Med Eng Phys; 2019 Mar; 65():8-23. PubMed ID: 30745099
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Measurement of systolic and diastolic arterial wall shear stress in the ascending aorta.
    Efstathopoulos EP; Patatoukas G; Pantos I; Benekos O; Katritsis D; Kelekis NL
    Phys Med; 2008 Dec; 24(4):196-203. PubMed ID: 18343178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wall shear stress in the thoracic aorta at rest and with dobutamine stress after arterial switch operation.
    van der Palen RLF; Juffermans JF; Kroft LJM; Hazekamp MG; Lamb HJ; Blom NA; Roest AAW; Westenberg JJM
    Eur J Cardiothorac Surg; 2021 Apr; 59(4):814-822. PubMed ID: 33382414
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Live imaging and modeling for shear stress quantification in the embryonic zebrafish heart.
    Boselli F; Vermot J
    Methods; 2016 Feb; 94():129-34. PubMed ID: 26390811
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling.
    Vedula V; Lee J; Xu H; Kuo CJ; Hsiai TK; Marsden AL
    PLoS Comput Biol; 2017 Oct; 13(10):e1005828. PubMed ID: 29084212
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Volumetric segmentation-free method for rapid visualization of vascular wall shear stress using 4D flow MRI.
    Masutani EM; Contijoch F; Kyubwa E; Cheng J; Alley MT; Vasanawala S; Hsiao A
    Magn Reson Med; 2018 Aug; 80(2):748-755. PubMed ID: 29516632
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Label-free quantitative measurement of cardiovascular dynamics in a zebrafish embryo using frequency-comb-referenced-quantitative phase imaging.
    Boonruangkan J; Farrokhi H; Rohith TM; Kwok S; Carney TJ; Su PC; Kim YJ
    J Biomed Opt; 2021 Nov; 26(11):. PubMed ID: 34773396
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of shear-sensitive genes in the normal rat aorta identifies Hand2 as a major flow-responsive transcription factor.
    Björck HM; Renner J; Maleki S; Nilsson SF; Kihlberg J; Folkersen L; Karlsson M; Ebbers T; Eriksson P; Länne T
    PLoS One; 2012; 7(12):e52227. PubMed ID: 23284944
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hemodynamic effects on atherosclerosis-prone coronary artery: wall shear stress/rate distribution and impedance phase angle in coronary and aortic circulation.
    Lee BK; Kwon HM; Hong BK; Park BE; Suh SH; Cho MT; Lee CS; Kim MC; Kim CJ; Yoo SS; Kim HS
    Yonsei Med J; 2001 Aug; 42(4):375-83. PubMed ID: 11519078
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 4D flow MRI, cardiac function, and T
    Geiger J; Rahsepar AA; Suwa K; Powell A; Ghasemiesfe A; Barker AJ; Collins JD; Carr JC; Markl M
    J Magn Reson Imaging; 2018 Jul; 48(1):121-131. PubMed ID: 29206322
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bileaflet mechanical aortic valves do not alter ascending aortic wall shear stress.
    Farag ES; Schade EL; van Ooij P; Boekholdt SM; Planken RN; van Kimmenade R; Nederveen AJ; de Mol BAJM; Kluin J
    Int J Cardiovasc Imaging; 2019 Apr; 35(4):703-710. PubMed ID: 30741363
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes in wall shear stress of cerebral arteriovenous malformation feeder arteries after embolization and surgery.
    Alaraj A; Shakur SF; Amin-Hanjani S; Mostafa H; Khan S; Aletich VA; Charbel FT
    Stroke; 2015 May; 46(5):1216-20. PubMed ID: 25813197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.