These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22433714)

  • 21. Assisted large fragment insertion by Red/ET-recombination (ALFIRE)--an alternative and enhanced method for large fragment recombineering.
    Rivero-Müller A; Lajić S; Huhtaniemi I
    Nucleic Acids Res; 2007; 35(10):e78. PubMed ID: 17517785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient DNA subcloning through selective restriction endonuclease digestion.
    Spear MA
    Biotechniques; 2000 Apr; 28(4):660-2, 664, 666 passim. PubMed ID: 10769743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct Isolation of Seamless Mutant Bacterial Artificial Chromosomes.
    Lyozin GT; Kosaka Y; Bhattacharje G; Yost HJ; Brunelli L
    Curr Protoc Mol Biol; 2017 Apr; 118():8.6.1-8.6.29. PubMed ID: 28369677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster.
    Venken KJ; He Y; Hoskins RA; Bellen HJ
    Science; 2006 Dec; 314(5806):1747-51. PubMed ID: 17138868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of recombination-mediated genetic engineering for construction of rescue human cytomegalovirus bacterial artificial chromosome clones.
    Dulal K; Silver B; Zhu H
    J Biomed Biotechnol; 2012; 2012():357147. PubMed ID: 22500089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple and highly efficient BAC recombineering using galK selection.
    Warming S; Costantino N; Court DL; Jenkins NA; Copeland NG
    Nucleic Acids Res; 2005 Feb; 33(4):e36. PubMed ID: 15731329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A general method to modify BACs to generate large recombinant DNA fragments.
    Shen W; Huang Y; Tang Y; Liu DP; Liang CC
    Mol Biotechnol; 2005 Nov; 31(3):181-6. PubMed ID: 16230767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel conditional plasmids regulated by chemical switches provide versatile tools for genetic engineering in Escherichia coli.
    Riedl A; Gruber S; Ruzsics Z
    Plasmid; 2020 Sep; 111():102531. PubMed ID: 32920019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A reliable and efficient method for deleting operational sequences in PACs and BACs.
    Nistala R; Sigmund CD
    Nucleic Acids Res; 2002 May; 30(10):e41. PubMed ID: 12000846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A low-copy-number plasmid for retrieval of toxic genes from BACs and generation of conditional targeting constructs.
    Na G; Wolfe A; Ko C; Youn H; Lee YM; Byun SJ; Jeon I; Koo Y
    Mol Biotechnol; 2013 Jun; 54(2):504-14. PubMed ID: 22945876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of specific clones from nonarrayed BAC libraries through homologous recombination.
    Nefedov M; Carbone L; Field M; Schein J; de Jong PJ
    J Biomed Biotechnol; 2011; 2011():560124. PubMed ID: 20981149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mini-lambda: a tractable system for chromosome and BAC engineering.
    Court DL; Swaminathan S; Yu D; Wilson H; Baker T; Bubunenko M; Sawitzke J; Sharan SK
    Gene; 2003 Oct; 315():63-9. PubMed ID: 14557065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo cloning of large chromosomal segments into a BAC derivative by generalized transduction and recombineering in Salmonella enterica.
    Kato A
    J Gen Appl Microbiol; 2016 Nov; 62(5):225-232. PubMed ID: 27666751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid construction of a Bacterial Artificial Chromosomal (BAC) expression vector using designer DNA fragments.
    Chen C; Zhao X; Jin Y; Zhao ZK; Suh JW
    Plasmid; 2014 Nov; 76():79-86. PubMed ID: 25454071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic manipulation of poxviruses using bacterial artificial chromosome recombineering.
    Cottingham MG
    Methods Mol Biol; 2012; 890():37-57. PubMed ID: 22688760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant Gene Modification by BAC Recombineering.
    Hu Z; Ghosh A; Koncz C
    Methods Mol Biol; 2022; 2479():71-84. PubMed ID: 35583733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple method for rapid cloning of complete herpesvirus genomes.
    Knickmann J; Staliunaite L; Puhach O; Ostermann E; Günther T; Nichols J; Jarvis MA; Voigt S; Grundhoff A; Davison AJ; Brune W
    Cell Rep Methods; 2024 Feb; 4(2):100696. PubMed ID: 38266652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recombineering linear BACs.
    Chen Q; Narayanan K
    Methods Mol Biol; 2015; 1227():27-54. PubMed ID: 25239740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generating in vivo cloning vectors for parallel cloning of large gene clusters by homologous recombination.
    Lee J; Rha E; Yeom SJ; Lee DH; Choi ES; Lee SG
    PLoS One; 2013; 8(11):e79979. PubMed ID: 24244585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combination of overlapping bacterial artificial chromosomes by a two-step recombinogenic engineering method.
    Zhang XM; Huang JD
    Nucleic Acids Res; 2003 Aug; 31(15):e81. PubMed ID: 12888533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.