These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2243410)

  • 1. Steady and pulsatile flow fields in an end-to-side arterial anastomosis model.
    Ojha M; Ethier CR; Johnston KW; Cobbold RS
    J Vasc Surg; 1990 Dec; 12(6):747-53. PubMed ID: 2243410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamics of a side-to-end proximal arterial anastomosis model.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1993 Apr; 17(4):646-55. PubMed ID: 8464081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review.
    Haruguchi H; Teraoka S
    J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
    O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T
    J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulations of pulsatile flow in an end-to-side anastomosis model.
    Shaik E; Hoffmann KA; Dietiker JF
    Mol Cell Biomech; 2007 Mar; 4(1):41-53. PubMed ID: 17879770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro testing of a newly developed arteriovenous double-outflow graft.
    Heise M; Kirschner P; Rabsch A; Zanow J; Settmacher U; Heidenhain C
    J Vasc Surg; 2010 Aug; 52(2):421-8. PubMed ID: 20591600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influences of graft diameter on the blood flow in 2-way bypassing surgery].
    Qiao A; Liu Y; Zhang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):346-50, 377. PubMed ID: 18610620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of angle on wall shear stress distribution for an end-to-side anastomosis.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1994 Jun; 19(6):1067-73. PubMed ID: 8201708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical simulation of flow in a two-dimensional end-to-side anastomosis model.
    Steinman DA; Vinh B; Ethier CR; Ojha M; Cobbold RS; Johnston KW
    J Biomech Eng; 1993 Feb; 115(1):112-8. PubMed ID: 8445888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery.
    How TV; Rowe CS; Gilling-Smith GL; Harris PL
    J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of flow through a Miller cuff bypass graft.
    Henry FS; Küpper C; Lewington NP
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):207-17. PubMed ID: 12186713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes.
    Sharp MK; Thurston GB; Moore JE
    Biorheology; 1996; 33(3):185-208. PubMed ID: 8935179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow pattern and shear stress distribution of distal end-to-side anastomoses. A comparison of the instantaneous velocity fields obtained by particle image velocimetry.
    Heise M; Schmidt S; Krüger U; Rückert R; Rösler S; Neuhaus P; Settmacher U
    J Biomech; 2004 Jul; 37(7):1043-51. PubMed ID: 15165874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis.
    Ene-Iordache B; Remuzzi A
    Nephrol Dial Transplant; 2012 Jan; 27(1):358-68. PubMed ID: 21771751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses.
    Longest PW; Kleinstreuer C; Deanda A
    Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress.
    Sho E; Nanjo H; Sho M; Kobayashi M; Komatsu M; Kawamura K; Xu C; Zarins CK; Masuda H
    J Vasc Surg; 2004 Mar; 39(3):601-12. PubMed ID: 14981455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis.
    Steinman DA; Ethier CR
    J Biomech Eng; 1994 Aug; 116(3):294-301. PubMed ID: 7799630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.