These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

980 related articles for article (PubMed ID: 22434367)

  • 1. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow.
    Kim HJ; Huh D; Hamilton G; Ingber DE
    Lab Chip; 2012 Jun; 12(12):2165-74. PubMed ID: 22434367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip.
    Jeon MS; Choi YY; Mo SJ; Ha JH; Lee YS; Lee HU; Park SD; Shim JJ; Lee JL; Chung BG
    Nano Converg; 2022 Feb; 9(1):8. PubMed ID: 35133522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation.
    Kim HJ; Ingber DE
    Integr Biol (Camb); 2013 Sep; 5(9):1130-40. PubMed ID: 23817533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathomimetic modeling of human intestinal diseases and underlying host-gut microbiome interactions in a gut-on-a-chip.
    Shin W; Kim HJ
    Methods Cell Biol; 2018; 146():135-148. PubMed ID: 30037458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Morphogenesis and Differentiation of Human Intestinal Epithelium in a Gut-on-a-Chip.
    Shin W; Kim HJ
    Methods Mol Biol; 2023; 2650():197-206. PubMed ID: 37310633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic gut-on-a-chip with three-dimensional villi structure.
    Shim KY; Lee D; Han J; Nguyen NT; Park S; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):37. PubMed ID: 28451924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine.
    Chi M; Yi B; Oh S; Park DJ; Sung JH; Park S
    Biomed Microdevices; 2015; 17(3):9966. PubMed ID: 26002774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-culture of Living Microbiome with Microengineered Human Intestinal Villi in a Gut-on-a-Chip Microfluidic Device.
    Kim HJ; Lee J; Choi JH; Bahinski A; Ingber DE
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27684630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert.
    Shin W; Kim HJ
    Nat Protoc; 2022 Mar; 17(3):910-939. PubMed ID: 35110737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids.
    Kasendra M; Tovaglieri A; Sontheimer-Phelps A; Jalili-Firoozinezhad S; Bein A; Chalkiadaki A; Scholl W; Zhang C; Rickner H; Richmond CA; Li H; Breault DT; Ingber DE
    Sci Rep; 2018 Feb; 8(1):2871. PubMed ID: 29440725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.
    Jang KJ; Mehr AP; Hamilton GA; McPartlin LA; Chung S; Suh KY; Ingber DE
    Integr Biol (Camb); 2013 Sep; 5(9):1119-29. PubMed ID: 23644926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfabrication of human organs-on-chips.
    Huh D; Kim HJ; Fraser JP; Shea DE; Khan M; Bahinski A; Hamilton GA; Ingber DE
    Nat Protoc; 2013 Nov; 8(11):2135-57. PubMed ID: 24113786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestine-on-chip device increases ECM remodeling inducing faster epithelial cell differentiation.
    De Gregorio V; Corrado B; Sbrescia S; Sibilio S; Urciuolo F; Netti PA; Imparato G
    Biotechnol Bioeng; 2020 Feb; 117(2):556-566. PubMed ID: 31598957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.
    Kim HJ; Li H; Collins JJ; Ingber DE
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):E7-15. PubMed ID: 26668389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fish-gut-on-chip: development of a microfluidic bioreactor to study the role of the fish intestine in vitro.
    Drieschner C; Könemann S; Renaud P; Schirmer K
    Lab Chip; 2019 Sep; 19(19):3268-3276. PubMed ID: 31482163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip.
    Li XG; Chen MX; Zhao SQ; Wang XQ
    Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-patterned endogenous stroma equivalent induces polarized crypt-villus architecture of human small intestinal epithelium.
    De Gregorio V; Imparato G; Urciuolo F; Netti PA
    Acta Biomater; 2018 Nov; 81():43-59. PubMed ID: 30282052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies.
    Maurer M; Gresnigt MS; Last A; Wollny T; Berlinghof F; Pospich R; Cseresnyes Z; Medyukhina A; Graf K; Gröger M; Raasch M; Siwczak F; Nietzsche S; Jacobsen ID; Figge MT; Hube B; Huber O; Mosig AS
    Biomaterials; 2019 Nov; 220():119396. PubMed ID: 31398556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Biomimetic Human Gut-on-a-Chip for Modeling Drug Metabolism in Intestine.
    Guo Y; Li Z; Su W; Wang L; Zhu Y; Qin J
    Artif Organs; 2018 Dec; 42(12):1196-1205. PubMed ID: 30256442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioengineered Human Organ-on-Chip Reveals Intestinal Microenvironment and Mechanical Forces Impacting Shigella Infection.
    Grassart A; Malardé V; Gobaa S; Sartori-Rupp A; Kerns J; Karalis K; Marteyn B; Sansonetti P; Sauvonnet N
    Cell Host Microbe; 2019 Sep; 26(3):435-444.e4. PubMed ID: 31492657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.