These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

980 related articles for article (PubMed ID: 22434367)

  • 21. Establishment and Application of Peristaltic Human Gut-Vessel Microsystem for Studying Host-Microbial Interaction.
    Jing B; Wang ZA; Zhang C; Deng Q; Wei J; Luo Y; Zhang X; Li J; Du Y
    Front Bioeng Biotechnol; 2020; 8():272. PubMed ID: 32296697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic chip for culturing intestinal epithelial cell layers: Characterization and comparison of drug transport between dynamic and static models.
    Kulthong K; Duivenvoorde L; Sun H; Confederat S; Wu J; Spenkelink B; de Haan L; Marin V; van der Zande M; Bouwmeester H
    Toxicol In Vitro; 2020 Jun; 65():104815. PubMed ID: 32119998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel membrane-on-chip guides morphogenesis for the reconstruction of the intestinal crypt-villus axis.
    Sibilio S; Mennella R; Gregorio V; Rocca A; Urciuolo F; Imparato G; Netti PA
    Biofabrication; 2024 Aug; 16(4):. PubMed ID: 39029501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gut-on-a-chip for exploring the transport mechanism of Hg(II).
    Wang L; Han J; Su W; Li A; Zhang W; Li H; Hu H; Song W; Xu C; Chen J
    Microsyst Nanoeng; 2023; 9():2. PubMed ID: 36597512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Primary exploration of host-microorganism interaction and enteritis treatment with an embedded membrane microfluidic chip of the human intestinal-vascular microsystem.
    Zhao W; Yao Y; Zhang T; Lu H; Zhang X; Zhao L; Chen X; Zhu J; Sui G; Zhao W
    Front Bioeng Biotechnol; 2022; 10():1035647. PubMed ID: 36561041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shear-Enhanced Dynamic Adhesion of Lactobacillus rhamnosus GG on Intestinal Epithelia: Correlative Effect of Protein Expression and Interface Mechanics.
    Eshrati M; Amadei F; Staffer S; Stremmel W; Tanaka M
    Langmuir; 2019 Jan; 35(2):529-537. PubMed ID: 30567428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro.
    Villenave R; Wales SQ; Hamkins-Indik T; Papafragkou E; Weaver JC; Ferrante TC; Bahinski A; Elkins CA; Kulka M; Ingber DE
    PLoS One; 2017; 12(2):e0169412. PubMed ID: 28146569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple three-dimensional gut model constructed in a restricted ductal microspace induces intestinal epithelial cell integrity and facilitates absorption assays.
    Nakajima T; Sasaki K; Yamamori A; Sakurai K; Miyata K; Watanabe T; Matsunaga YT
    Biomater Sci; 2020 Oct; 8(20):5615-5627. PubMed ID: 32945306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of a Functional Factor, p40, by Lactobacillus rhamnosus GG Is Promoted by Intestinal Epithelial Cell-Secreted Extracellular Vesicles.
    Yang L; Higginbotham JN; Liu L; Zhao G; Acra SA; Peek RM; Polk DB; Li H; Yan F
    Infect Immun; 2019 Jul; 87(7):. PubMed ID: 31010817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epithelial adhesion mediated by pilin SpaC is required for Lactobacillus rhamnosus GG-induced cellular responses.
    Ardita CS; Mercante JW; Kwon YM; Luo L; Crawford ME; Powell DN; Jones RM; Neish AS
    Appl Environ Microbiol; 2014 Aug; 80(16):5068-77. PubMed ID: 24928883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Versatile human in vitro triple coculture model coincubated with adhered gut microbes reproducibly mimics pro-inflammatory host-microbe interactions in the colon.
    Beterams A; De Paepe K; Maes L; Wise IJ; De Keersmaecker H; Rajkovic A; Laukens D; Van de Wiele T; Calatayud Arroyo M
    FASEB J; 2021 Dec; 35(12):e21992. PubMed ID: 34719821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A microfluidic device with 3-d hydrogel villi scaffold to simulate intestinal absorption.
    Kim SH; Lee JW; Choi I; Kim YC; Lee JB; Sung JH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7220-8. PubMed ID: 24245233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methods to Study Epithelial Transport Protein Function and Expression in Native Intestine and Caco-2 Cells Grown in 3D.
    Anabazhagan AN; Chatterjee I; Priyamvada S; Kumar A; Tyagi S; Saksena S; Alrefai WA; Dudeja PK; Gill RK
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Farewell to Animal Testing: Innovations on Human Intestinal Microphysiological Systems.
    Kang TH; Kim HJ
    Micromachines (Basel); 2016 Jun; 7(7):. PubMed ID: 30404281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Establishment and evaluation of on-chip intestinal barrier biosystems based on microfluidic techniques.
    Wang H; Li X; Shi P; You X; Zhao G
    Mater Today Bio; 2024 Jun; 26():101079. PubMed ID: 38774450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS).
    Koh JH; Choi SH; Park SW; Choi NJ; Kim Y; Kim SH
    Food Microbiol; 2013 Oct; 36(1):7-13. PubMed ID: 23764214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implementation of a dynamic intestinal gut-on-a-chip barrier model for transport studies of lipophilic dioxin congeners.
    Kulthong K; Duivenvoorde L; Mizera BZ; Rijkers D; Dam GT; Oegema G; Puzyn T; Bouwmeester H; van der Zande M
    RSC Adv; 2018 Sep; 8(57):32440-32453. PubMed ID: 35547722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice.
    Laval L; Martin R; Natividad JN; Chain F; Miquel S; Desclée de Maredsous C; Capronnier S; Sokol H; Verdu EF; van Hylckama Vlieg JE; Bermúdez-Humarán LG; Smokvina T; Langella P
    Gut Microbes; 2015; 6(1):1-9. PubMed ID: 25517879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 3D construct of the intestinal canal with wrinkle morphology on a centrifugation configuring microfluidic chip.
    Wang Y; Shao Z; Zheng W; Xie Y; Luo G; Ding M; Liang Q
    Biofabrication; 2019 Jul; 11(4):045001. PubMed ID: 31091514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A 3D bioprinted hydrogel gut-on-chip with integrated electrodes for transepithelial electrical resistance (TEER) measurements.
    Vera D; García-Díaz M; Torras N; Castillo Ó; Illa X; Villa R; Alvarez M; Martinez E
    Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38574551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 49.