These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
980 related articles for article (PubMed ID: 22434367)
41. Human Lung Small Airway-on-a-Chip Protocol. Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955 [TBL] [Abstract][Full Text] [Related]
42. Intestinal Permeability of Drugs in Caco-2 Cells Cultured in Microfluidic Devices. Sasaki Y; Tatsuoka H; Tsuda M; Sumi T; Eguchi Y; So K; Higuchi Y; Takayama K; Torisawa Y; Yamashita F Biol Pharm Bull; 2022; 45(9):1246-1253. PubMed ID: 36047192 [TBL] [Abstract][Full Text] [Related]
43. Advances of microfluidic intestine-on-a-chip for analyzing anti-inflammation of food. Liang D; Su W; Tan M Crit Rev Food Sci Nutr; 2022; 62(16):4418-4434. PubMed ID: 33480263 [TBL] [Abstract][Full Text] [Related]
44. Adhesion and Colonization of the Probiotic Lactobacillus rhamnosus Labeled by Dsred2 in Mouse Gut. Li C; Bei T; Niu Z; Guo X; Wang M; Lu H; Gu X; Tian H Curr Microbiol; 2019 Jul; 76(7):896-903. PubMed ID: 31115599 [TBL] [Abstract][Full Text] [Related]
45. Development of an Advanced Primary Human In Vitro Model of the Small Intestine. Schweinlin M; Wilhelm S; Schwedhelm I; Hansmann J; Rietscher R; Jurowich C; Walles H; Metzger M Tissue Eng Part C Methods; 2016 Sep; 22(9):873-83. PubMed ID: 27481569 [TBL] [Abstract][Full Text] [Related]
46. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice. Lin R; Sun Y; Mu P; Zheng T; Mu H; Deng F; Deng Y; Wen J Biochem Pharmacol; 2020 May; 175():113868. PubMed ID: 32088259 [TBL] [Abstract][Full Text] [Related]
47. Use of imaging techniques to identify efficient controlled release systems of Lactobacillus rhamnosus GG during in vitro digestion. Guerin J; Burgain J; Borges F; Bhandari B; Desobry S; Scher J; Gaiani C Food Funct; 2017 Apr; 8(4):1587-1598. PubMed ID: 28287654 [TBL] [Abstract][Full Text] [Related]
48. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression. Kim SH; Chi M; Yi B; Kim SH; Oh S; Kim Y; Park S; Sung JH Integr Biol (Camb); 2014 Dec; 6(12):1122-31. PubMed ID: 25200891 [TBL] [Abstract][Full Text] [Related]
49. Transcriptome comparisons of in vitro intestinal epithelia grown under static and microfluidic gut-on-chip conditions with in vivo human epithelia. Kulthong K; Hooiveld GJEJ; Duivenvoorde L; Miro Estruch I; Marin V; van der Zande M; Bouwmeester H Sci Rep; 2021 Feb; 11(1):3234. PubMed ID: 33547413 [TBL] [Abstract][Full Text] [Related]
50. Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium. Dosh RH; Essa A; Jordan-Mahy N; Sammon C; Le Maitre CL Acta Biomater; 2017 Oct; 62():128-143. PubMed ID: 28859901 [TBL] [Abstract][Full Text] [Related]
51. The physiological performance of a three-dimensional model that mimics the microenvironment of the small intestine. Pusch J; Votteler M; Göhler S; Engl J; Hampel M; Walles H; Schenke-Layland K Biomaterials; 2011 Oct; 32(30):7469-78. PubMed ID: 21764120 [TBL] [Abstract][Full Text] [Related]
52. The protective potency of probiotic bacteria and their microbial products against enteric infections-review. Koninkx JF; Malago JJ Folia Microbiol (Praha); 2008; 53(3):189-94. PubMed ID: 18661289 [TBL] [Abstract][Full Text] [Related]
53. Development and validation of bioengineered intestinal tubules for translational research aimed at safety and efficacy testing of drugs and nutrients. Jochems PGM; van Bergenhenegouwen J; van Genderen AM; Eis ST; Wilod Versprille LJF; Wichers HJ; Jeurink PV; Garssen J; Masereeuw R Toxicol In Vitro; 2019 Oct; 60():1-11. PubMed ID: 31071426 [TBL] [Abstract][Full Text] [Related]
54. Development of a villi-like micropatterned porous membrane for intestinal magnesium and calcium uptake studies. Gommers LMM; Skrzypek K; Bolhuis-Versteeg L; Pinckaers NET; Vrijhof R; van der Wijst J; de Baaij JHF; Stamatialis D; Hoenderop JGJ Acta Biomater; 2019 Nov; 99():110-120. PubMed ID: 31465881 [TBL] [Abstract][Full Text] [Related]
55. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Huh D; Leslie DC; Matthews BD; Fraser JP; Jurek S; Hamilton GA; Thorneloe KS; McAlexander MA; Ingber DE Sci Transl Med; 2012 Nov; 4(159):159ra147. PubMed ID: 23136042 [TBL] [Abstract][Full Text] [Related]
56. Lactobacillus rhamnosus GG-induced Expression of Leptin in the Intestine Orchestrates Epithelial Cell Proliferation. Darby TM; Naudin CR; Luo L; Jones RM Cell Mol Gastroenterol Hepatol; 2020; 9(4):627-639. PubMed ID: 31874255 [TBL] [Abstract][Full Text] [Related]
57. Uptake of silica particulate drug carriers in an intestine-on-a-chip: towards a better in vitro model of nanoparticulate carrier and mucus interactions. Pocock K; Delon LC; Khatri A; Prestidge C; Gibson R; Barbe C; Thierry B Biomater Sci; 2019 May; 7(6):2410-2420. PubMed ID: 30920576 [TBL] [Abstract][Full Text] [Related]
58. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Costello CM; Sorna RM; Goh YL; Cengic I; Jain NK; March JC Mol Pharm; 2014 Jul; 11(7):2030-9. PubMed ID: 24798584 [TBL] [Abstract][Full Text] [Related]
59. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Costello CM; Hongpeng J; Shaffiey S; Yu J; Jain NK; Hackam D; March JC Biotechnol Bioeng; 2014 Jun; 111(6):1222-32. PubMed ID: 24390638 [TBL] [Abstract][Full Text] [Related]
60. Microfluidic Gut-liver chip for reproducing the first pass metabolism. Choe A; Ha SK; Choi I; Choi N; Sung JH Biomed Microdevices; 2017 Mar; 19(1):4. PubMed ID: 28074384 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]