BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22434571)

  • 21. [Isolation PQQ biosynthesis gene cluster from Gluconobacter oxydans based on sorbose-dehydrogenase activity].
    Gao S; Xiong X; Wang J; Zhang W
    Wei Sheng Wu Xue Bao; 2010 Aug; 50(8):1104-8. PubMed ID: 20931881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 5-Keto-D-fructose production from sugar alcohol by isolated wild strain
    Adachi O; Nguyen TM; Hours RA; Kataoka N; Matsushita K; Akakabe Y; Yakushi T
    Biosci Biotechnol Biochem; 2020 Aug; 84(8):1745-1747. PubMed ID: 32427050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The first in-depth exploration of the genome of the engineered bacterium, Gluconobacter thailandicus.
    Liu X; Ali A; Liu C; Liu Y; Zhang P
    Biotechnol Appl Biochem; 2022 Jun; 69(3):1190-1198. PubMed ID: 34009642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized synthesis of L-sorbose by C(5)-dehydrogenation of D-sorbitol with Gluconobacter oxydans.
    De Wulf P; Soetaert W; Vandamme EJ
    Biotechnol Bioeng; 2000 Aug; 69(3):339-43. PubMed ID: 10861414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291.
    Shinjoh M; Tazoe M; Hoshino T
    J Bacteriol; 2002 Feb; 184(3):861-3. PubMed ID: 11790761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses.
    Adachi O; Fujii Y; Ghaly MF; Toyama H; Shinagawa E; Matsushita K
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2755-62. PubMed ID: 11826974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Purification of L-sorbose/L-sorbosne dehydrogenase from Ketogulonigenium vulgare and construction and selection of genomic library].
    Xie L; Zhang D; Dou YF; Zhang LP; Zhao BH
    Sheng Wu Gong Cheng Xue Bao; 2007 Sep; 23(5):891-5. PubMed ID: 18051871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255--enzymatic and genetic characterization.
    Hoshino T; Sugisawa T; Shinjoh M; Tomiyama N; Miyazaki T
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):278-88. PubMed ID: 12686146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The 5-Ketofructose Reductase of
    Nguyen TM; Goto M; Noda S; Matsutani M; Hodoya Y; Kataoka N; Adachi O; Matsushita K; Yakushi T
    J Bacteriol; 2021 Sep; 203(19):e0055820. PubMed ID: 34309403
    [No Abstract]   [Full Text] [Related]  

  • 31. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-L-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium.
    Du J; Bai W; Song H; Yuan YJ
    Metab Eng; 2013 Sep; 19():50-6. PubMed ID: 23747604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An L-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of D-sorbose with enzymatic or electrochemical cofactor regeneration.
    Gauer S; Wang Z; Otten H; Etienne M; Bjerrum MJ; Lo Leggio L; Walcarius A; Giffhorn F; Kohring GW
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3023-32. PubMed ID: 24061413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fermentation of L-sorbose by Gluconobacter melanogenus. II. Inducible formation of enzyme catalyzing conversion of L-sorbose to 2-keto-L-gulonic acid.
    Tsukada Y; Perlman D
    Biotechnol Bioeng; 1972 Sep; 14(5):811-8. PubMed ID: 5071667
    [No Abstract]   [Full Text] [Related]  

  • 34. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol.
    Gao L; Hu Y; Liu J; Du G; Zhou J; Chen J
    Metab Eng; 2014 Jul; 24():30-7. PubMed ID: 24792618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka.
    Perumpuli PA; Watanabe T; Toyama H
    Biosci Biotechnol Biochem; 2014; 78(3):533-41. PubMed ID: 25036846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The fermentation of L-sorbose by Gluconobacter melanogenus. I. General characteristics of the fermentation.
    Tsukada Y; Perlman D
    Biotechnol Bioeng; 1972 Sep; 14(5):799-810. PubMed ID: 4403668
    [No Abstract]   [Full Text] [Related]  

  • 37. Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor.
    Zhou X; Hua X; Zhou X; Xu Y; Zhang W
    Bioresour Technol; 2019 Apr; 277():221-224. PubMed ID: 30658939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced production of l-sorbose by systematic engineering of dehydrogenases in
    Liu L; Chen Y; Yu S; Chen J; Zhou J
    Synth Syst Biotechnol; 2022 Jun; 7(2):730-737. PubMed ID: 35356389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A pyrroloquinoline quinine-dependent membrane-bound d-sorbitol dehydrogenase from Gluconobacter oxydans exhibits an ordered Bi Bi reaction mechanism.
    Yang XP; Wei LJ; Ye JB; Yin B; Wei DZ
    Arch Biochem Biophys; 2008 Sep; 477(2):206-10. PubMed ID: 18407824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane-bound glycerol dehydrogenase catalyzes oxidation of D-pentonates to 4-keto-D-pentonates, D-fructose to 5-keto-D-fructose, and D-psicose to 5-keto-D-psicose.
    Ano Y; Hours RA; Akakabe Y; Kataoka N; Yakushi T; Matsushita K; Adachi O
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):411-418. PubMed ID: 27849146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.