These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 22434668)
1. The importance of dehydration in determining ion transport in narrow pores. Richards LA; Schäfer AI; Richards BS; Corry B Small; 2012 Jun; 8(11):1701-9. PubMed ID: 22434668 [TBL] [Abstract][Full Text] [Related]
2. Quantifying barriers to monovalent anion transport in narrow non-polar pores. Richards LA; Schäfer AI; Richards BS; Corry B Phys Chem Chem Phys; 2012 Sep; 14(33):11633-8. PubMed ID: 22821005 [TBL] [Abstract][Full Text] [Related]
3. Intrinsic ion selectivity of narrow hydrophobic pores. Song C; Corry B J Phys Chem B; 2009 May; 113(21):7642-9. PubMed ID: 19419185 [TBL] [Abstract][Full Text] [Related]
4. Theorization on ion-exchange equilibria: activity of species in 2-D phases. Tamura H J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407 [TBL] [Abstract][Full Text] [Related]
5. Experimental energy barriers to anions transporting through nanofiltration membranes. Richards LA; Richards BS; Corry B; Schäfer AI Environ Sci Technol; 2013 Feb; 47(4):1968-76. PubMed ID: 23298263 [TBL] [Abstract][Full Text] [Related]
6. Ion hydration in nanopores and the molecular basis of selectivity. Carrillo-Tripp M; San-Román ML; Hernańdez-Cobos J; Saint-Martin H; Ortega-Blake I Biophys Chem; 2006 Dec; 124(3):243-50. PubMed ID: 16765508 [TBL] [Abstract][Full Text] [Related]
7. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes. Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182 [TBL] [Abstract][Full Text] [Related]
8. Ion permeation dynamics in carbon nanotubes. Liu H; Murad S; Jameson CJ J Chem Phys; 2006 Aug; 125(8):084713. PubMed ID: 16965045 [TBL] [Abstract][Full Text] [Related]
9. Modeling the selective partitioning of cations into negatively charged nanopores in water. Yang L; Garde S J Chem Phys; 2007 Feb; 126(8):084706. PubMed ID: 17343468 [TBL] [Abstract][Full Text] [Related]
10. Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores. Sahu S; Zwolak M Nanoscale; 2017 Aug; 9(32):11424-11428. PubMed ID: 28767109 [TBL] [Abstract][Full Text] [Related]
11. Barriers to ion translocation in cationic and anionic receptors from the Cys-loop family. Ivanov I; Cheng X; Sine SM; McCammon JA J Am Chem Soc; 2007 Jul; 129(26):8217-24. PubMed ID: 17552523 [TBL] [Abstract][Full Text] [Related]
12. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Peter C; Hummer G Biophys J; 2005 Oct; 89(4):2222-34. PubMed ID: 16006629 [TBL] [Abstract][Full Text] [Related]
13. Electric field-controlled water permeation coupled to ion transport through a nanopore. Dzubiella J; Allen RJ; Hansen JP J Chem Phys; 2004 Mar; 120(11):5001-4. PubMed ID: 15267365 [TBL] [Abstract][Full Text] [Related]
14. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes. Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944 [TBL] [Abstract][Full Text] [Related]
15. Simulation insights for graphene-based water desalination membranes. Konatham D; Yu J; Ho TA; Striolo A Langmuir; 2013 Sep; 29(38):11884-97. PubMed ID: 23848277 [TBL] [Abstract][Full Text] [Related]
16. Is the mobility of the pore walls and water molecules in the selectivity filter of KcsA channel functionally important? Kraszewski S; Yesylevskyy SO; Boiteux C; Ramseyer C; Kharkyanen VN Phys Chem Chem Phys; 2008 Apr; 10(16):2249-55. PubMed ID: 18404233 [TBL] [Abstract][Full Text] [Related]
17. Minimalist molecular model for nanopore selectivity. Carrillo-Tripp M; Saint-Martin H; Ortega-Blake I Phys Rev Lett; 2004 Oct; 93(16):168104. PubMed ID: 15525038 [TBL] [Abstract][Full Text] [Related]
18. Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes. Chae WS; Gough DV; Ham SK; Robinson DB; Braun PV ACS Appl Mater Interfaces; 2012 Aug; 4(8):3973-9. PubMed ID: 22799397 [TBL] [Abstract][Full Text] [Related]
19. Electric-field-controlled water and ion permeation of a hydrophobic nanopore. Dzubiella J; Hansen JP J Chem Phys; 2005 Jun; 122(23):234706. PubMed ID: 16008472 [TBL] [Abstract][Full Text] [Related]
20. Application of the charge regulation model to transport of ions through hydrophilic membranes: one-dimensional transport model for narrow pores (nanofiltration). de Lint WB; Biesheuvel PM; Verweij H J Colloid Interface Sci; 2002 Jul; 251(1):131-42. PubMed ID: 16290711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]