BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22434685)

  • 41. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments.
    Uchida A; Alami NH; Brown A
    Mol Biol Cell; 2009 Dec; 20(23):4997-5006. PubMed ID: 19812246
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neurofilaments in health and disease.
    Gotow T
    Med Electron Microsc; 2000; 33(4):173-99. PubMed ID: 11810476
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neurofilaments in health and disease.
    Julien JP; Mushynski WE
    Prog Nucleic Acid Res Mol Biol; 1998; 61():1-23. PubMed ID: 9752717
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extensive phosphorylation and axonal transport of triton-soluble neurofilament subunits.
    Shea TB; Jung C; Yabe J; Ma D; Fischer I
    Subcell Biochem; 1998; 31():527-61. PubMed ID: 9932505
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Charcot-Marie-Tooth causing HSPB1 mutations increase Cdk5-mediated phosphorylation of neurofilaments.
    Holmgren A; Bouhy D; De Winter V; Asselbergh B; Timmermans JP; Irobi J; Timmerman V
    Acta Neuropathol; 2013 Jul; 126(1):93-108. PubMed ID: 23728742
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport.
    Roy S; Coffee P; Smith G; Liem RK; Brady ST; Black MM
    J Neurosci; 2000 Sep; 20(18):6849-61. PubMed ID: 10995829
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective accumulation of the high molecular weight neurofilament subunit within the distal region of growing axonal neurites.
    Yabe JT; Wang FS; Chylinski T; Katchmar T; Shea TB
    Cell Motil Cytoskeleton; 2001 Sep; 50(1):1-12. PubMed ID: 11746668
    [TBL] [Abstract][Full Text] [Related]  

  • 48. C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity.
    Jung C; Yabe JT; Shea TB
    Brain Res; 2000 Feb; 856(1-2):12-9. PubMed ID: 10677606
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo.
    Yuan A; Nixon RA; Rao MV
    Neurosci Lett; 2006 Jan; 393(2-3):264-8. PubMed ID: 16266786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neurofilament transport in vivo minimally requires hetero-oligomer formation.
    Yuan A; Rao MV; Kumar A; Julien JP; Nixon RA
    J Neurosci; 2003 Oct; 23(28):9452-8. PubMed ID: 14561875
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cyclin-dependent kinase 5 increases perikaryal neurofilament phosphorylation and inhibits neurofilament axonal transport in response to oxidative stress.
    Shea TB; Zheng YL; Ortiz D; Pant HC
    J Neurosci Res; 2004 Jun; 76(6):795-800. PubMed ID: 15160391
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Local modulation of Neurofilament transport at Nodes of Ranvier.
    Jia Z; Li Y
    Biomed Phys Eng Express; 2020 Sep; 6(5):055025. PubMed ID: 33444256
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinesin-mediated transport of neurofilament protein oligomers in growing axons.
    Yabe JT; Pimenta A; Shea TB
    J Cell Sci; 1999 Nov; 112 ( Pt 21)():3799-814. PubMed ID: 10523515
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuronal intermediate filaments.
    Lee MK; Cleveland DW
    Annu Rev Neurosci; 1996; 19():187-217. PubMed ID: 8833441
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mice with disrupted midsized and heavy neurofilament genes lack axonal neurofilaments but have unaltered numbers of axonal microtubules.
    Elder GA; Friedrich VL; Pereira D; Tu PH; Zhang B; Lee VM; Lazzarini RA
    J Neurosci Res; 1999 Jul; 57(1):23-32. PubMed ID: 10397632
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neurofilament subunits undergo more rapid translocation within retinas than in optic axons.
    Jung C; Shea TB
    Brain Res Mol Brain Res; 2004 Mar; 122(2):188-92. PubMed ID: 15010211
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Loss of neurofilaments alters axonal growth dynamics.
    Walker KL; Yoo HK; Undamatla J; Szaro BG
    J Neurosci; 2001 Dec; 21(24):9655-66. PubMed ID: 11739575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Respective roles of neurofilaments, microtubules, MAP1B, and tau in neurite outgrowth and stabilization.
    Shea TB; Beermann ML
    Mol Biol Cell; 1994 Aug; 5(8):863-75. PubMed ID: 7803854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overexpression of neurofilament subunit M accelerates axonal transport of neurofilaments.
    Xu Z; Tung VW
    Brain Res; 2000 Jun; 866(1-2):326-32. PubMed ID: 10825509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate.
    Rao MV; Campbell J; Yuan A; Kumar A; Gotow T; Uchiyama Y; Nixon RA
    J Cell Biol; 2003 Dec; 163(5):1021-31. PubMed ID: 14662746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.