BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 22434685)

  • 61. Kinesin-5 Blocker Monastrol Protects Against Bortezomib-Induced Peripheral Neurotoxicity.
    Bobylev I; Peters D; Vyas M; Barham M; Klein I; von Strandmann EP; Neiss WF; Lehmann HC
    Neurotox Res; 2017 Nov; 32(4):555-562. PubMed ID: 28612296
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Aluminum induces neurofilament aggregation by stabilizing cross-bridging of phosphorylated c-terminal sidearms.
    Kushkuley J; Metkar S; Chan WK; Lee S; Shea TB
    Brain Res; 2010 Mar; 1322():118-23. PubMed ID: 20132798
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Decelerated transport and its mechanism of 2,5-hexanedione on middle-molecular-weight neurofilament in rat dorsal root ganglia cells.
    Han XY; Cheng D; Song FY; Zeng T; An LH; Xie KQ
    Neuroscience; 2014 Jun; 269():192-8. PubMed ID: 24699225
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Neurofilament Transport Is Bidirectional
    Boyer NP; Julien JP; Jung P; Brown A
    eNeuro; 2022; 9(4):. PubMed ID: 35896389
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Assembly and turnover of neurofilaments in growing axonal neurites.
    Boumil EF; Vohnoutka R; Lee S; Pant H; Shea TB
    Biol Open; 2018 Jan; 7(1):. PubMed ID: 29158321
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dissociation of Axonal Neurofilament Content from Its Transport Rate.
    Yuan A; Hassinger L; Rao MV; Julien JP; Miller CC; Nixon RA
    PLoS One; 2015; 10(7):e0133848. PubMed ID: 26208164
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Increased expression of cdk5/p25 in N2a cells leads to hyperphosphorylation and impaired axonal transport of neurofilament proteins.
    Zhou J; Wang H; Feng Y; Chen J
    Life Sci; 2010 Mar; 86(13-14):532-7. PubMed ID: 20153752
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Differential synthesis and cytoskeletal deposition of neurofilament subunits before and during axonal outgrowth in NB2a/d1 cells: evidence that segregation of phosphorylated subunits within the axonal cytoskeleton involves selective deposition.
    Shea TB
    J Neurosci Res; 1995 Feb; 40(2):225-32. PubMed ID: 7745615
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration.
    Perrot R; Berges R; Bocquet A; Eyer J
    Mol Neurobiol; 2008 Aug; 38(1):27-65. PubMed ID: 18649148
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neurofilament transport is dependent on actin and myosin.
    Jung C; Chylinski TM; Pimenta A; Ortiz D; Shea TB
    J Neurosci; 2004 Oct; 24(43):9486-96. PubMed ID: 15509735
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phosphate dependent and independent neurofilament epitopes in the axonal swellings of patients with motor neuron disease and controls.
    Schmidt ML; Carden MJ; Lee VM; Trojanowski JQ
    Lab Invest; 1987 Mar; 56(3):282-94. PubMed ID: 2434727
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons.
    Yuan A; Sasaki T; Rao MV; Kumar A; Kanumuri V; Dunlop DS; Liem RK; Nixon RA
    J Neurosci; 2009 Sep; 29(36):11316-29. PubMed ID: 19741138
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Triton-soluble phosphovariants of the high molecular weight neurofilament subunit from NB2a/d1 cells are assembly-competent. Implications for normal and abnormal neurofilament assembly.
    Shea TB
    FEBS Lett; 1994 Apr; 343(2):131-6. PubMed ID: 8168617
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport.
    Rao MV; Garcia ML; Miyazaki Y; Gotow T; Yuan A; Mattina S; Ward CM; Calcutt NA; Uchiyama Y; Nixon RA; Cleveland DW
    J Cell Biol; 2002 Aug; 158(4):681-93. PubMed ID: 12186852
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The single neurofilament subunit of the lamprey forms filaments and regulates axonal caliber and neuronal size in vivo.
    Hall GF; Chu B; Lee S; Liu Y; Yao J
    Cell Motil Cytoskeleton; 2000 Jul; 46(3):166-82. PubMed ID: 10913964
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Influence of a GSK3β phosphorylation site within the proximal C-terminus of Neurofilament-H on neurofilament dynamics.
    Vohnoutka RB; Boumil EF; Liu Y; Uchida A; Pant HC; Shea TB
    Biol Open; 2017 Oct; 6(10):1516-1527. PubMed ID: 28882840
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Selective interruption of axonal transport of neurofilament proteins in the visual system by beta,beta'-iminodipropionitrile (IDPN) intoxication.
    Parhad IM; Griffin JW; Hoffman PN; Koves JF
    Brain Res; 1986 Jan; 363(2):315-24. PubMed ID: 2417667
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged.
    Lasek RJ; Paggi P; Katz MJ
    Brain Res; 1993 Jul; 616(1-2):58-64. PubMed ID: 7689412
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Axonal neurofilaments differ in composition and morphology from those in the soma of the squid stellate ganglion.
    Tytell M; Zackroff RV; Hill WD
    Cell Motil Cytoskeleton; 1988; 9(4):349-60. PubMed ID: 3390868
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ.
    Jung C; Shea TB
    Cell Motil Cytoskeleton; 1999; 42(3):230-40. PubMed ID: 10098936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.