These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22434685)

  • 81. Axonal transport of neurofilaments: a single population of intermittently moving polymers.
    Li Y; Jung P; Brown A
    J Neurosci; 2012 Jan; 32(2):746-58. PubMed ID: 22238110
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments.
    He Y; Francis F; Myers KA; Yu W; Black MM; Baas PW
    J Cell Biol; 2005 Feb; 168(5):697-703. PubMed ID: 15728192
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Kinesin, dynein and neurofilament transport.
    Shea TB; Flanagan LA
    Trends Neurosci; 2001 Nov; 24(11):644-8. PubMed ID: 11672808
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases.
    Xue C; Shtylla B; Brown A
    PLoS Comput Biol; 2015 Aug; 11(8):e1004406. PubMed ID: 26285012
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Alteration of O-GlcNAcylation affects assembly and axonal transport of neurofilament via phosphorylation.
    Peng P; Wang J; Ding N; Zhou M; Gu Z; Shi Y; Gong C; Zhao G; Deng Y
    Neurosci Lett; 2019 Apr; 698():97-104. PubMed ID: 30395884
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Phosphorylation-mediated conformational changes in the mouse neurofilament architecture: insight from a neurofilament brush model.
    Stevenson W; Chang R; Gebremichael Y
    J Mol Biol; 2011 Jan; 405(4):1101-18. PubMed ID: 21134382
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Neurofilament reassembly in vitro: biochemical, morphological and immuno-electron microscopic studies employing monoclonal antibodies to defined epitopes.
    Balin BJ; Clark EA; Trojanowski JQ; Lee VM
    Brain Res; 1991 Aug; 556(2):181-95. PubMed ID: 1718561
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Puerarin attenuates glutamate-induced neurofilament axonal transport impairment.
    Zhou J; Wang H; Xiong Y; Li Z; Feng Y; Chen J
    J Ethnopharmacol; 2010 Oct; 132(1):150-6. PubMed ID: 20727960
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Compartment-Specific Phosphorylation of Squid Neurofilaments.
    Grant P; Pant HC
    Methods Enzymol; 2016; 568():615-33. PubMed ID: 26795486
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Massive accumulation of M and H subunits of neurofilament proteins in spinal motor neurons of neurofilament deficient Japanese quail, Quv.
    Toyoshima I; Kato K; Sugawara M; Wada C; Okawa S; Kobayashi M; Masamune O; Watanabe S
    Neurosci Lett; 2000 Jun; 287(3):175-8. PubMed ID: 10863023
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments.
    Sihag RK; Inagaki M; Yamaguchi T; Shea TB; Pant HC
    Exp Cell Res; 2007 Jun; 313(10):2098-109. PubMed ID: 17498690
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Biochemical analysis of axon-specific phosphorylation events using isolated squid axoplasms.
    Kang M; Baker L; Song Y; Brady ST; Morfini G
    Methods Cell Biol; 2016; 131():199-216. PubMed ID: 26794515
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The Mobility of Neurofilaments in Mature Myelinated Axons of Adult Mice.
    Fenn JD; Li Y; Julien JP; Jung P; Brown A
    eNeuro; 2023 Mar; 10(3):. PubMed ID: 36882311
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Fast transport of neurofilament protein along microtubules in squid axoplasm.
    Prahlad V; Helfand BT; Langford GM; Vale RD; Goldman RD
    J Cell Sci; 2000 Nov; 113 ( Pt 22)():3939-46. PubMed ID: 11058081
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Regulation of neurofilament length and transport by a dynamic cycle of phospho-dependent polymer severing and annealing.
    Uchida A; Peng J; Brown A
    Mol Biol Cell; 2023 Jun; 34(7):ar68. PubMed ID: 36989035
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Neurofilaments: Novel findings and future challenges.
    van Asperen JV; Kotaich F; Caillol D; Bomont P
    Curr Opin Cell Biol; 2024 Apr; 87():102326. PubMed ID: 38401181
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Characterization of a neurofilament-associated kinase that phosphorylates the middle molecular mass component of chicken neurofilaments.
    Hollander BA; Bennett GS
    Brain Res; 1992 Dec; 599(2):237-45. PubMed ID: 1291033
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Involvement of neurofilaments in the radial growth of axons.
    Cleveland DW; Monteiro MJ; Wong PC; Gill SR; Gearhart JD; Hoffman PN
    J Cell Sci Suppl; 1991; 15():85-95. PubMed ID: 1824110
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Microtubule-independent regulation of neurofilament interactions in vitro by neurofilament-bound ATPase activities.
    Leterrier JF; Janmey PA; Eyer J
    Biochem Biophys Res Commun; 2009 Jun; 384(1):37-42. PubMed ID: 19379708
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The C-terminal domains of NF-H and NF-M subunits maintain axonal neurofilament content by blocking turnover of the stationary neurofilament network.
    Rao MV; Yuan A; Campbell J; Kumar A; Nixon RA
    PLoS One; 2012; 7(9):e44320. PubMed ID: 23028520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.