BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22435616)

  • 1. Quantitative assessment of the sulfuric acid contribution to new particle growth.
    Bzdek BR; Zordan CA; Pennington MR; Luther GW; Johnston MV
    Environ Sci Technol; 2012 Apr; 46(8):4365-73. PubMed ID: 22435616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-world particulate matter and gaseous emissions from motor vehicles in a highway tunnel.
    Gertler AW; Gillies JA; Pierson WR; Rogers CF; Sagebiel JC; Abu-Allaban M; Coulombe W; Tarnay L; Cahill TA
    Res Rep Health Eff Inst; 2002 Jan; (107):5-56; discussion 79-92. PubMed ID: 11954677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First online measurements of sulfuric acid gas in modern heavy-duty diesel engine exhaust: implications for nanoparticle formation.
    Arnold F; Pirjola L; Rönkkö T; Reichl U; Schlager H; Lähde T; Heikkilä J; Keskinen J
    Environ Sci Technol; 2012 Oct; 46(20):11227-34. PubMed ID: 23035617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Airborne particles in Swansea, UK: their collection and characterization.
    Price H; Arthur R; Sexton K; Gregory C; Hoogendoorn B; Matthews I; Jones T; BéruBé K
    J Toxicol Environ Health A; 2010; 73(5):355-67. PubMed ID: 20155578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apportionment of motor vehicle emissions from fast changes in number concentration and chemical composition of ultrafine particles near a roadway intersection.
    Klems JP; Pennington MR; Zordan CA; McFadden L; Johnston MV
    Environ Sci Technol; 2011 Jul; 45(13):5637-43. PubMed ID: 21667963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative and time-resolved nanoparticle composition measurements during new particle formation.
    Bzdek BR; Horan AJ; Pennington MR; DePalma JW; Zhao J; Jen CN; Hanson DR; Smith JN; de McMurry PH; Johnston MV
    Faraday Discuss; 2013; 165():25-43. PubMed ID: 24600995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elemental composition of nanoparticles with the nano aerosol mass spectrometer.
    Zordan CA; Pennington MR; Johnston MV
    Anal Chem; 2010 Oct; 82(19):8034-8. PubMed ID: 20804130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source apportionment of PM(2.5) and selected hazardous air pollutants in Seattle.
    Wu CF; Larson TV; Wu SY; Williamson J; Westberg HH; Liu LJ
    Sci Total Environ; 2007 Nov; 386(1-3):42-52. PubMed ID: 17716709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insufficient Condensable Organic Vapors Lead to Slow Growth of New Particles in an Urban Environment.
    Li X; Li Y; Cai R; Yan C; Qiao X; Guo Y; Deng C; Yin R; Chen Y; Li Y; Yao L; Sarnela N; Zhang Y; Petäjä T; Bianchi F; Liu Y; Kulmala M; Hao J; Smith JN; Jiang J
    Environ Sci Technol; 2022 Jul; 56(14):9936-9946. PubMed ID: 35749221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the single particle mixing state of individual ship plume events measured at the Port of Los Angeles.
    Ault AP; Gaston CI; Wang Y; Dominguez G; Thiemens MH; Prather KA
    Environ Sci Technol; 2010 Mar; 44(6):1954-61. PubMed ID: 20148582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of SO2 oxidation in new particle formation events.
    Meng H; Zhu Y; Evans GJ; Jeong CH; Yao X
    J Environ Sci (China); 2015 Apr; 30():90-101. PubMed ID: 25872713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations.
    Hinkley JT; Bridgman HA; Buhre BJ; Gupta RP; Nelson PF; Wall TF
    Sci Total Environ; 2008 Feb; 391(1):104-13. PubMed ID: 18054995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle size distribution of ambient aerosols in an industrial area.
    Rao BP; Srivastava A; Yasmin F; Ray S; Gupta N; Chauhan C; Rao CV; Wate SR
    Bull Environ Contam Toxicol; 2012 May; 88(5):717-21. PubMed ID: 22307732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of coarse particles in an urban area.
    Lagudu UR; Raja S; Hopke PK; Chalupa DC; Utell MJ; Casuccio G; Lersch TL; West RR
    Environ Sci Technol; 2011 Apr; 45(8):3288-96. PubMed ID: 21434635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of water-soluble inorganic chemical components in size-resolved airborne particulate matters--Sheffield, UK.
    Xie R; Jackson KA; Seip HM; McLeod CW; Wibetoe G; Schofield MJ; Anderson D; Hanssen JE
    J Environ Monit; 2009 Feb; 11(2):336-43. PubMed ID: 19212591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations on the formation, growth and chemical composition of aerosols in an urban environment.
    Crilley LR; Jayaratne ER; Ayoko GA; Miljevic B; Ristovski Z; Morawska L
    Environ Sci Technol; 2014 Jun; 48(12):6588-96. PubMed ID: 24847803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved chemical composition of individual nanoparticles in urban air.
    Zordan CA; Wang S; Johnston MV
    Environ Sci Technol; 2008 Sep; 42(17):6631-6. PubMed ID: 18800541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemistry of new particle growth during springtime in the Seoul metropolitan area, Korea.
    Kim H; Zhang Q
    Chemosphere; 2019 Jun; 225():713-722. PubMed ID: 30903845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.