These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 22435705)

  • 1. Prospecting for ice association: characterization of freeze-thaw selected enrichment cultures from latitudinally distant soils.
    Wilson SL; Grogan P; Walker VK
    Can J Microbiol; 2012 Apr; 58(4):402-12. PubMed ID: 22435705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-thaw tolerance and clues to the winter survival of a soil community.
    Walker VK; Palmer GR; Voordouw G
    Appl Environ Microbiol; 2006 Mar; 72(3):1784-92. PubMed ID: 16517623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of low-temperature resistance in bacteria and potential applications.
    Wilson SL; Walker VK
    Environ Technol; 2010; 31(8-9):943-56. PubMed ID: 20662383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-tolerance between osmotic and freeze-thaw stress in microbial assemblages from temperate lakes.
    Wilson SL; Frazer C; Cumming BF; Nuin PA; Walker VK
    FEMS Microbiol Ecol; 2012 Nov; 82(2):405-15. PubMed ID: 22551442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice-active characteristics of soil bacteria selected by ice-affinity.
    Wilson SL; Kelley DL; Walker VK
    Environ Microbiol; 2006 Oct; 8(10):1816-24. PubMed ID: 16958762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China.
    Ren J; Song C; Hou A; Song Y; Zhu X; Cagle GA
    Sci Total Environ; 2018 Jun; 625():782-791. PubMed ID: 29306166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.
    Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S
    Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm, ice recrystallization inhibition and freeze-thaw protection in an epiphyte community.
    Wu Z; Kan FW; She YM; Walker VK
    Prikl Biokhim Mikrobiol; 2012; 48(4):403-10. PubMed ID: 23035573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes.
    Duarte GF; Rosado AS; Seldin L; de Araujo W; van Elsas JD
    Appl Environ Microbiol; 2001 Mar; 67(3):1052-62. PubMed ID: 11229891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat.
    Sawicka JE; Robador A; Hubert C; Jørgensen BB; Brüchert V
    ISME J; 2010 Apr; 4(4):585-94. PubMed ID: 20033071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the Lignin Catabolism Potential of Soil-Derived Lignocellulolytic Microbial Consortia by a Gene-Centric Metagenomic Approach.
    Díaz-García L; Bugg TDH; Jiménez DJ
    Microb Ecol; 2020 Nov; 80(4):885-896. PubMed ID: 32572536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the selection of a produced water enrichment for biological gas hydrate inhibitors.
    Wilson SL; Voordouw G; Walker VK
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10254-61. PubMed ID: 24819435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods.
    Steven B; Briggs G; McKay CP; Pollard WH; Greer CW; Whyte LG
    FEMS Microbiol Ecol; 2007 Feb; 59(2):513-23. PubMed ID: 17313587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media.
    Wu M; Chen L; Tian Y; Ding Y; Dick WA
    Environ Pollut; 2013 Jul; 178():152-8. PubMed ID: 23570783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil.
    Sharma S; Szele Z; Schilling R; Munch JC; Schloter M
    Appl Environ Microbiol; 2006 Mar; 72(3):2148-54. PubMed ID: 16517665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation.
    Omrani R; Spini G; Puglisi E; Saidane D
    Biodegradation; 2018 Apr; 29(2):187-209. PubMed ID: 29492776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative metagenome analysis of an Alaskan glacier.
    Choudhari S; Lohia R; Grigoriev A
    J Bioinform Comput Biol; 2014 Apr; 12(2):1441003. PubMed ID: 24712530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequent freeze-thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: a laboratory experiment.
    Stres B; Philippot L; Faganeli J; Tiedje JM
    FEMS Microbiol Ecol; 2010 Nov; 74(2):323-35. PubMed ID: 20735477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenomic analysis of microbial community and function involved in cd-contaminated soil.
    Feng G; Xie T; Wang X; Bai J; Tang L; Zhao H; Wei W; Wang M; Zhao Y
    BMC Microbiol; 2018 Feb; 18(1):11. PubMed ID: 29439665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Diversity of culturable bacteria in the typical frozen soil areas in China].
    Li M; Feng H; Yang Z; Liu C; Xia X; Wang C; Jiang L; Jiang H
    Wei Sheng Wu Xue Bao; 2011 Dec; 51(12):1595-604. PubMed ID: 22379800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.