These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 22436024)

  • 1. Post-transcriptional regulatory networks play a key role in noise reduction that is conserved from micro-organisms to mammals.
    Joshi A; Beck Y; Michoel T
    FEBS J; 2012 Sep; 279(18):3501-12. PubMed ID: 22436024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay between posttranscriptional and posttranslational interactions of RNA-binding proteins.
    Mittal N; Scherrer T; Gerber AP; Janga SC
    J Mol Biol; 2011 Jun; 409(3):466-79. PubMed ID: 21501624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From specific to global analysis of posttranscriptional regulation in eukaryotes: posttranscriptional regulatory networks.
    Janga SC
    Brief Funct Genomics; 2012 Nov; 11(6):505-21. PubMed ID: 23124862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global signatures of protein binding on structured RNAs in Saccharomyces cerevisiae.
    Yang Y; Umetsu J; Lu ZJ
    Sci China Life Sci; 2014 Jan; 57(1):22-35. PubMed ID: 24369346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the expression dynamics of RNA-binding proteins in posttranscriptional regulatory networks.
    Mittal N; Roy N; Babu MM; Janga SC
    Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20300-5. PubMed ID: 19918083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional organization of RNA regulons in the post-transcriptional regulatory network of yeast.
    Joshi A; Van de Peer Y; Michoel T
    Nucleic Acids Res; 2011 Nov; 39(21):9108-17. PubMed ID: 21840901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinating expression of RNA binding proteins with their mRNA targets.
    Jiang H; Xu L; Wang Z; Keene J; Gu Z
    Sci Rep; 2014 Nov; 4():7175. PubMed ID: 25417751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.
    Nishtala S; Neelamraju Y; Janga SC
    Sci Rep; 2016 May; 6():25711. PubMed ID: 27161996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-binding protein-mediated post-transcriptional controls of gene expression: integration of molecular mechanisms at the 3' end of mRNAs?
    Vindry C; Vo Ngoc L; Kruys V; Gueydan C
    Biochem Pharmacol; 2014 Jun; 89(4):431-40. PubMed ID: 24735612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors.
    Österlund T; Bordel S; Nielsen J
    Integr Biol (Camb); 2015 May; 7(5):560-8. PubMed ID: 25855217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach.
    Ma HW; Buer J; Zeng AP
    BMC Bioinformatics; 2004 Dec; 5():199. PubMed ID: 15603590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in RIP-chip analysis : RNA-binding protein immunoprecipitation-microarray profiling.
    Baroni TE; Chittur SV; George AD; Tenenbaum SA
    Methods Mol Biol; 2008; 419():93-108. PubMed ID: 18369977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive cross-talk and global regulators identified from an analysis of the integrated transcriptional and signaling network in Escherichia coli.
    Antiqueira L; Janga SC; Costa Lda F
    Mol Biosyst; 2012 Nov; 8(11):3028-35. PubMed ID: 22960930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system.
    Hogan DJ; Riordan DP; Gerber AP; Herschlag D; Brown PO
    PLoS Biol; 2008 Oct; 6(10):e255. PubMed ID: 18959479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory RNA-binding proteins in senescence.
    Wang W
    Ageing Res Rev; 2012 Sep; 11(4):485-90. PubMed ID: 22414963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteomic analysis reveals concurrent RNA-protein interactions and identifies new RNA-binding proteins in Saccharomyces cerevisiae.
    Klass DM; Scheibe M; Butter F; Hogan GJ; Mann M; Brown PO
    Genome Res; 2013 Jun; 23(6):1028-38. PubMed ID: 23636942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico characterization and prediction of global protein-mRNA interactions in yeast.
    Pancaldi V; Bähler J
    Nucleic Acids Res; 2011 Aug; 39(14):5826-36. PubMed ID: 21459850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of RNA-protein interactions in plants.
    Barkan A
    Methods Mol Biol; 2009; 553():13-37. PubMed ID: 19588099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.