BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

770 related articles for article (PubMed ID: 22436163)

  • 1. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach.
    Zehetmeier M; Baudracco J; Hoffmann H; Heißenhuber A
    Animal; 2012 Jan; 6(1):154-66. PubMed ID: 22436163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of feed-related farm characteristics on relative values of genetic traits in dairy cows to reduce greenhouse gas emissions along the chain.
    Van Middelaar CE; Berentsen PB; Dijkstra J; Van Arendonk JA; De Boer IJ
    J Dairy Sci; 2015 Jul; 98(7):4889-903. PubMed ID: 25912865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin.
    Dutreuil M; Wattiaux M; Hardie CA; Cabrera VE
    J Dairy Sci; 2014 Sep; 97(9):5904-17. PubMed ID: 24996278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods to determine the relative value of genetic traits in dairy cows to reduce greenhouse gas emissions along the chain.
    van Middelaar CE; Berentsen PB; Dijkstra J; van Arendonk JA; de Boer IJ
    J Dairy Sci; 2014; 97(8):5191-205. PubMed ID: 24881792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production, partial cash flows and greenhouse gas emissions of simulated dairy herds with extended lactations.
    Kok A; Lehmann JO; Kemp B; Hogeveen H; van Middelaar CE; de Boer IJM; van Knegsel ATM
    Animal; 2019 May; 13(5):1074-1083. PubMed ID: 30345949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of longevity on greenhouse gas emissions and profitability of individual dairy cows analysed with different system boundaries.
    Grandl F; Furger M; Kreuzer M; Zehetmeier M
    Animal; 2019 Jan; 13(1):198-208. PubMed ID: 29807552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate mitigation by dairy intensification depends on intensive use of spared grassland.
    Styles D; Gonzalez-Mejia A; Moorby J; Foskolos A; Gibbons J
    Glob Chang Biol; 2018 Feb; 24(2):681-693. PubMed ID: 28940511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.
    Aguirre-Villegas HA; Passos-Fonseca TH; Reinemann DJ; Armentano LE; Wattiaux MA; Cabrera VE; Norman JM; Larson R
    J Dairy Sci; 2015 Mar; 98(3):1571-92. PubMed ID: 25597974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway.
    Özkan Gülzari Ş; Vosough Ahmadi B; Stott AW
    Prev Vet Med; 2018 Feb; 150():19-29. PubMed ID: 29406080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: a case study.
    Mc Geough EJ; Little SM; Janzen HH; McAllister TA; McGinn SM; Beauchemin KA
    J Dairy Sci; 2012 Sep; 95(9):5164-5175. PubMed ID: 22916922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon footprint and ammonia emissions of California beef production systems.
    Stackhouse-Lawson KR; Rotz CA; Oltjen JW; Mitloehner FM
    J Anim Sci; 2012 Dec; 90(12):4641-55. PubMed ID: 22952361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods and consequences of including reduction in greenhouse gas emission in beef cattle multiple-trait selection.
    Barwick SA; Henzell AL; Herd RM; Walmsley BJ; Arthur PF
    Genet Sel Evol; 2019 Apr; 51(1):18. PubMed ID: 31035930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of feed demand on greenhouse gas emissions and farm profitability for organic and conventional dairy farms.
    Kiefer L; Menzel F; Bahrs E
    J Dairy Sci; 2014 Dec; 97(12):7564-74. PubMed ID: 25468708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of herd management decisions on dairy cow longevity, farm profitability, and emissions of enteric methane - a simulation study of milk and beef production.
    Clasen JB; Fikse WF; Ramin M; Lindberg M
    Animal; 2024 Feb; 18(2):101051. PubMed ID: 38199017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing productivity, herd structure, environmental performance, and profitability of dairy cattle herds.
    Liang D; Cabrera VE
    J Dairy Sci; 2015 Apr; 98(4):2812-23. PubMed ID: 25682149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley.
    Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S
    Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems' greenhouse gas emissions.
    O'Brien D; Shalloo L; Patton J; Buckley F; Grainger C; Wallace M
    Animal; 2012 Sep; 6(9):1512-27. PubMed ID: 23031525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of strain of Holstein-Friesian cow and feeding system on greenhouse gas emissions from pastoral dairy farms.
    O'Brien D; Shalloo L; Grainger C; Buckley F; Horan B; Wallace M
    J Dairy Sci; 2010 Jul; 93(7):3390-402. PubMed ID: 20630255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of lactation length on greenhouse gas emissions from the national dairy herd.
    Wall E; Coffey M; Pollott GE
    Animal; 2012 Nov; 6(11):1857-67. PubMed ID: 23031357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.