These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22436303)

  • 1. Si solid-state quantum dot-based materials for tandem solar cells.
    Conibeer G; Perez-Wurfl I; Hao X; Di D; Lin D
    Nanoscale Res Lett; 2012 Mar; 7(1):193. PubMed ID: 22436303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon quantum dot/crystalline silicon solar cells.
    Cho EC; Park S; Hao X; Song D; Conibeer G; Park SC; Green MA
    Nanotechnology; 2008 Jun; 19(24):245201. PubMed ID: 21825804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells.
    Kourkoutis LF; Hao X; Huang S; Puthen-Veettil B; Conibeer G; Green MA; Perez-Wurfl I
    Nanoscale; 2013 Aug; 5(16):7499-504. PubMed ID: 23832085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers.
    Cao Y; Lu P; Zhang X; Xu J; Xu L; Chen K
    Nanoscale Res Lett; 2014; 9(1):634. PubMed ID: 25489285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of phosphorus-boron co-doped c-Si quantum dots/SiNx:H thin film prepared by PECVD in-situ deposition.
    Gu Z; Shan F; Liu J
    Sci Rep; 2024 Sep; 14(1):21612. PubMed ID: 39284882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix.
    Hao XJ; Cho EC; Flynn C; Shen YS; Conibeer G; Green MA
    Nanotechnology; 2008 Oct; 19(42):424019. PubMed ID: 21832679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of power conversion efficiency by a stepwise band-gap structure for silicon quantum dot solar cells.
    Kwak GY; Kim TG; Kim N; Shin JY; Kim KJ
    Nanotechnology; 2020 May; 31(19):195404. PubMed ID: 31986507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum size effects on the optical properties of nc-Si QDs embedded in an a-SiOx matrix synthesized by spontaneous plasma processing.
    Das D; Samanta A
    Phys Chem Chem Phys; 2015 Feb; 17(7):5063-71. PubMed ID: 25598473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active doping of B in silicon nanostructures and development of a Si quantum dot solar cell.
    Hong SH; Kim YS; Lee W; Kim YH; Song JY; Jang JS; Park JH; Choi SH; Kim KJ
    Nanotechnology; 2011 Oct; 22(42):425203. PubMed ID: 21941033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Film-thickness-dependent conduction in ordered Si quantum dot arrays.
    Surana K; Lepage H; Lebrun JM; Doisneau B; Bellet D; Vandroux L; Le Carval G; Baudrit M; Thony P; Mur P
    Nanotechnology; 2012 Mar; 23(10):105401. PubMed ID: 22348886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design Strategy of Quantum Dot Thin-Film Solar Cells.
    Kim T; Lim S; Yun S; Jeong S; Park T; Choi J
    Small; 2020 Nov; 16(45):e2002460. PubMed ID: 33079485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells.
    Di D; Perez-Wurfl I; Gentle A; Kim DH; Hao X; Shi L; Conibeer G; Green MA
    Nanoscale Res Lett; 2010 Aug; 5(11):1762-1767. PubMed ID: 21124642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CuInSe2 Quantum Dot Solar Cells with High Open-Circuit Voltage.
    Panthani MG; Stolle CJ; Reid DK; Rhee DJ; Harvey TB; Akhavan VA; Yu Y; Korgel BA
    J Phys Chem Lett; 2013 Jun; 4(12):2030-4. PubMed ID: 26283248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced open-circuit voltage of PbS nanocrystal quantum dot solar cells.
    Yoon W; Boercker JE; Lumb MP; Placencia D; Foos EE; Tischler JG
    Sci Rep; 2013; 3():2225. PubMed ID: 23868514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-high density Si quantum dot thin film utilizing a gradient Si-rich oxide multilayer structure.
    Kuo KY; Huang PR; Lee PT
    Nanotechnology; 2013 May; 24(19):195701. PubMed ID: 23579196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.
    Hsieh PY; Lee CY; Tai NH
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4624-32. PubMed ID: 26815945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High efficiency Si quantum dot heterojunction solar cells using a single SiO
    Kim TG; Kwak GY; Do K; Kim KJ
    Nanotechnology; 2019 Aug; 30(32):325404. PubMed ID: 30952144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications.
    Sarkhoush M; Rasooli Saghai H; Soofi H
    Front Optoelectron; 2022 Oct; 15(1):42. PubMed ID: 36637679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics and carrier transport in doped Si/SiO2 quantum dots.
    Garcia-Castello N; Illera S; Prades JD; Ossicini S; Cirera A; Guerra R
    Nanoscale; 2015 Aug; 7(29):12564-71. PubMed ID: 26144524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MoS
    Najafi L; Taheri B; Martín-García B; Bellani S; Di Girolamo D; Agresti A; Oropesa-Nuñez R; Pescetelli S; Vesce L; Calabrò E; Prato M; Del Rio Castillo AE; Di Carlo A; Bonaccorso F
    ACS Nano; 2018 Nov; 12(11):10736-10754. PubMed ID: 30240189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.