These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2243635)

  • 1. Calcium inhibition of ATP-dependent inactivation of rod disk phosphodiesterase in isolated rods and membrane suspensions.
    Pugh EN; Cobbs WH; Barkdoll AE
    Neurosci Res Suppl; 1990; 12():S183-90. PubMed ID: 2243635
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of cyclic nucleotide concentrations in photoreceptors: an ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light.
    Miki N; Keirns JJ; Marcus FR; Freeman J; Bitensky MW
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3820-4. PubMed ID: 4359491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The control of phosphodiesterase in rod disk membranes: kinetics, possible mechanisms and significance for vision.
    Liebman PA; Pugh EN
    Vision Res; 1979; 19(4):375-80. PubMed ID: 224596
    [No Abstract]   [Full Text] [Related]  

  • 4. Calcium dependence of the activation and inactivation kinetics of the light-activated phosphodiesterase of retinal rods.
    Barkdoll AE; Pugh EN; Sitaramayya A
    J Gen Physiol; 1989 Jun; 93(6):1091-108. PubMed ID: 2549175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP can promote activation and deactivation of the rod cGMP-phosphodiesterase. Kinetic light scattering on intact rod outer segments.
    Kamps KM; Hofmann KP
    FEBS Lett; 1986 Nov; 208(2):241-7. PubMed ID: 3023137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rod outer segment phosphodiesterase: factors affecting the hydrolysis of cyclic-AMP and cyclic-GMP.
    Chader G; Fletcher R; Johnson M; Bensinger R
    Exp Eye Res; 1974 Jun; 18(6):509-15. PubMed ID: 4369151
    [No Abstract]   [Full Text] [Related]  

  • 7. Cyclic nucleotide hydrolysis: some possible natural regulators in retina and rod outer segments.
    Chader GJ; Herz L; Fletcher RT
    J Neurochem; 1974 Oct; 23(4):873-4. PubMed ID: 4372324
    [No Abstract]   [Full Text] [Related]  

  • 8. Involvement of ATP in activation and inactivation sequence of phosphodiesterase in frog rod outer segments.
    Kawamura S
    Biochim Biophys Acta; 1983 Jul; 732(1):276-81. PubMed ID: 6307364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+- and cGMP-induced Ca2+ fluxes in frog rod photoreceptors.
    Schnetkamp PP; Bownds MD
    J Gen Physiol; 1987 Mar; 89(3):481-500. PubMed ID: 3031199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light adaption of the cyclic GMP phosphodiesterase of frog photoreceptor membranes mediated by ATP and calcium ions.
    Kawamura S; Bownds MD
    J Gen Physiol; 1981 May; 77(5):571-91. PubMed ID: 6262431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of recoverin, the calcium-sensitive activator of photoreceptor guanylyl cyclase.
    Lambrecht HG; Koch KW
    FEBS Lett; 1991 Dec; 294(3):207-9. PubMed ID: 1684552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real time assay of rod disk membrane cGMP phosphodiesterase and its controller enzymes.
    Liebman PA; Evanczuk AT
    Methods Enzymol; 1982; 81():532-42. PubMed ID: 6285127
    [No Abstract]   [Full Text] [Related]  

  • 13. Activation of photoreceptor disk membrane phosphodiesterase by light and ATP.
    Bitensky MW; Miki N; Keirns JJ; Keirns M; Baraban JM; Freeman J; Wheeler MA; Lacy J; Marcus FR
    Adv Cyclic Nucleotide Res; 1975; 5():213-40. PubMed ID: 165667
    [No Abstract]   [Full Text] [Related]  

  • 14. Histochemical evidence of cyclic nucleotide phosphodiesterase in photoreceptor outer segments.
    Robb RM
    Invest Ophthalmol; 1974 Oct; 13(10):740-7. PubMed ID: 4370068
    [No Abstract]   [Full Text] [Related]  

  • 15. A link between rhodopsin and disc membrane cyclic nucleotide phosphodiesterase. Action spectrum and sensitivity to illumination.
    Keirns JJ; Miki N; Bitensky MW; Keirns M
    Biochemistry; 1975 Jun; 14(12):2760-6. PubMed ID: 167806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [K+-dependent p-nitrophenylphosphatase activity of the outer segments of the retinal rods].
    Sobota A
    Biokhimiia; 1973; 38(5):1047-53. PubMed ID: 4360788
    [No Abstract]   [Full Text] [Related]  

  • 17. Molecular mechanisms of photoreception. IV. Ca2+-inhibited GTPase of rod outer segments of the frog retina.
    Krapivinsky GB; Tishchenkov VG; Fesenko EE
    Biochim Biophys Acta; 1980 Aug; 614(2):435-45. PubMed ID: 6105885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodopsin kinase prepared from bovine rod disk membranes quenches light activation of cGMP phosphodiesterase in a reconstituted system.
    Sitaramayya A
    Biochemistry; 1986 Sep; 25(19):5460-8. PubMed ID: 3022791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Outer retinal rod segment cyclic nucleotide phosphodiesterase; protein inhibitor separation, bimodal effect of GTP].
    Dumler IL; Furaev VV; Etingof RN
    Dokl Akad Nauk SSSR; 1980; 253(6):1504-8. PubMed ID: 6253254
    [No Abstract]   [Full Text] [Related]  

  • 20. Soluble 5'-nucleotidase: purification and reversible binding to photoreceptor membranes.
    Fukui H; Shichi H
    Biochemistry; 1982 Jul; 21(15):3677-81. PubMed ID: 6288080
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.