These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2243637)

  • 21. The cochlea--new insights into the conversion of sound into electrical signals.
    Evans MG; Kros CJ
    J Physiol; 2006 Oct; 576(Pt 1):3-5. PubMed ID: 16916902
    [No Abstract]   [Full Text] [Related]  

  • 22. Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle.
    Jaramillo F; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1330-4. PubMed ID: 7679501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF.
    Guinan JJ; Gifford ML
    Hear Res; 1988 Dec; 37(1):29-45. PubMed ID: 3225230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Apamin-sensitive, small-conductance, calcium-activated potassium channels mediate cholinergic inhibition of chick auditory hair cells.
    Yuhas WA; Fuchs PA
    J Comp Physiol A; 1999 Nov; 185(5):455-62. PubMed ID: 10573868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating mechanical responses to pulsatile electrical stimulation of the cochlea.
    McAnally KI; Brown M; Clark GM
    Hear Res; 1997 Apr; 106(1-2):146-53. PubMed ID: 9112114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ryanodine is a positive modulator of acetylcholine receptor gating in cochlear hair cells.
    Zorrilla de San Martín J; Ballestero J; Katz E; Elgoyhen AB; Fuchs PA
    J Assoc Res Otolaryngol; 2007 Dec; 8(4):474-83. PubMed ID: 17647061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postsynaptic M1 and M3 receptors are responsible for the muscarinic enhancement of retrograde endocannabinoid signalling in the hippocampus.
    Ohno-Shosaku T; Matsui M; Fukudome Y; Shosaku J; Tsubokawa H; Taketo MM; Manabe T; Kano M
    Eur J Neurosci; 2003 Jul; 18(1):109-16. PubMed ID: 12859343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical stimulation and Fura-2 fluorescence in the hair bundle of dissociated hair cells of the chick.
    Ohmori H
    J Physiol; 1988 May; 399():115-37. PubMed ID: 2457085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of caged calcium release on the adaptation of the transduction current in chick hair cells.
    Kimitsuki T; Ohmori H
    J Physiol; 1992 Dec; 458():27-40. PubMed ID: 1284566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efferent synapse mechanisms in chick hair cells.
    Ohmori H
    Prog Brain Res; 1993; 97():7-11. PubMed ID: 8234769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells.
    Hudspeth AJ; Choe Y; Mehta AD; Martin P
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11765-72. PubMed ID: 11050207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of SK2 channels enhances efferent suppression of cochlear responses without enhancing noise resistance.
    Maison SF; Parker LL; Young L; Adelman JP; Zuo J; Liberman MC
    J Neurophysiol; 2007 Apr; 97(4):2930-6. PubMed ID: 17267753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and characterization of SK2 channel from chicken short hair cells.
    Matthews TM; Duncan RK; Zidanic M; Michael TH; Fuchs PA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jun; 191(6):491-503. PubMed ID: 15868189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracellular calcium suppresses mechano-electrical transduction current in chick cochlear hair cells.
    Kimitsuki T; Taira T; Komune S; Komiyama S
    ORL J Otorhinolaryngol Relat Spec; 1998; 60(5):263-6. PubMed ID: 9693302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning and expression of the alpha9 nicotinic acetylcholine receptor subunit in cochlear hair cells of the chick.
    Hiel H; Luebke AE; Fuchs PA
    Brain Res; 2000 Mar; 858(1):215-25. PubMed ID: 10700617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A kinetic model for the muscarinic action of acetylcholine.
    Pott L; Pusch H
    Pflugers Arch; 1979 Dec; 383(1):75-7. PubMed ID: 574950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efferent modulation of hair cell tuning in the cochlea of the turtle.
    Art JJ; Crawford AC; Fettiplace R; Fuchs PA
    J Physiol; 1985 Mar; 360():397-421. PubMed ID: 3989721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model of the effect of outer hair cell motility on cochlear vibrations.
    Geisler CD
    Hear Res; 1986; 24(2):125-31. PubMed ID: 3771375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mathematical model of the vagally driven primary pacemaker.
    Bristow DG; Clark JW
    Am J Physiol; 1983 Jan; 244(1):H150-61. PubMed ID: 6295188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscarinic Acetylcholine Receptors and M-Currents Underlie Efferent-Mediated Slow Excitation in Calyx-Bearing Vestibular Afferents.
    Holt JC; Jordan PM; Lysakowski A; Shah A; Barsz K; Contini D
    J Neurosci; 2017 Feb; 37(7):1873-1887. PubMed ID: 28093476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.