These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 22436696)

  • 1. NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise.
    White AT; Schenk S
    Am J Physiol Endocrinol Metab; 2012 Aug; 303(3):E308-21. PubMed ID: 22436696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms.
    Little JP; Safdar A; Wilkin GP; Tarnopolsky MA; Gibala MJ
    J Physiol; 2010 Mar; 588(Pt 6):1011-22. PubMed ID: 20100740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptations of skeletal muscle mitochondria to exercise training.
    Lundby C; Jacobs RA
    Exp Physiol; 2016 Jan; 101(1):17-22. PubMed ID: 26440213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial adaptations in aged skeletal muscle: effect of exercise training.
    Ziaaldini MM; Hosseini SR; Fathi M
    Physiol Res; 2017 Mar; 66(1):1-14. PubMed ID: 27982690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural rearrangements in contractile apparatus and resulting skeletal muscle remodelling: effect of exercise training.
    Seene T; Kaasik P; Umnova M
    J Sports Med Phys Fitness; 2009 Dec; 49(4):410-23. PubMed ID: 20087301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinamide riboside supplementation does not alter whole-body or skeletal muscle metabolic responses to a single bout of endurance exercise.
    Stocks B; Ashcroft SP; Joanisse S; Dansereau LC; Koay YC; Elhassan YS; Lavery GG; Quek LE; O'Sullivan JF; Philp AM; Wallis GA; Philp A
    J Physiol; 2021 Mar; 599(5):1513-1531. PubMed ID: 33492681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism.
    Frederick DW; Davis JG; Dávila A; Agarwal B; Michan S; Puchowicz MA; Nakamaru-Ogiso E; Baur JA
    J Biol Chem; 2015 Jan; 290(3):1546-58. PubMed ID: 25411251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle.
    Yan Z; Okutsu M; Akhtar YN; Lira VA
    J Appl Physiol (1985); 2011 Jan; 110(1):264-74. PubMed ID: 21030673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of intermittent hypoxic training on indices of adaptation to hypoxia in rats during physical exertion].
    Havenauskas BL; Man'kovs'ka IM; Nosar VI; Nazarenko AI; Bratus' LV
    Fiziol Zh (1994); 2004; 50(6):32-42. PubMed ID: 15732757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise and Sirtuins: A Way to Mitochondrial Health in Skeletal Muscle.
    Vargas-Ortiz K; Pérez-Vázquez V; Macías-Cervantes MH
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31163574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-intensity exercise induces acute shifts in liver and skeletal muscle substrate metabolism but not chronic adaptations in tissue oxidative capacity.
    Fuller SE; Huang TY; Simon J; Batdorf HM; Essajee NM; Scott MC; Waskom CM; Brown JM; Burke SJ; Collier JJ; Noland RC
    J Appl Physiol (1985); 2019 Jul; 127(1):143-156. PubMed ID: 31095457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dysregulated cellular redox status during hyperammonemia causes mitochondrial dysfunction and senescence by inhibiting sirtuin-mediated deacetylation.
    Mishra S; Welch N; Karthikeyan M; Bellar A; Musich R; Singh SS; Zhang D; Sekar J; Attaway AH; Chelluboyina AK; Lorkowski SW; Roychowdhury S; Li L; Willard B; Smith JD; Hoppel CL; Vachharajani V; Kumar A; Dasarathy S
    Aging Cell; 2023 Jul; 22(7):e13852. PubMed ID: 37101412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintenance of NAD+ Homeostasis in Skeletal Muscle during Aging and Exercise.
    Ji LL; Yeo D
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of the nicotinamide riboside kinase NAD
    Doig CL; Zielinska AE; Fletcher RS; Oakey LA; Elhassan YS; Garten A; Cartwright D; Heising S; Alsheri A; Watson DG; Prehn C; Adamski J; Tennant DA; Lavery GG
    Skelet Muscle; 2020 Feb; 10(1):5. PubMed ID: 32075690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle.
    Fiorenza M; Gunnarsson TP; Hostrup M; Iaia FM; Schena F; Pilegaard H; Bangsbo J
    J Physiol; 2018 Jul; 596(14):2823-2840. PubMed ID: 29727016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise-induced mitochondrial biogenesis in skeletal muscle.
    Hood DA; Saleem A
    Nutr Metab Cardiovasc Dis; 2007 Jun; 17(5):332-7. PubMed ID: 17467251
    [No Abstract]   [Full Text] [Related]  

  • 18. TIGAR regulates mitochondrial functions through SIRT1-PGC1α pathway and translocation of TIGAR into mitochondria in skeletal muscle.
    Geng J; Wei M; Yuan X; Liu Z; Wang X; Zhang D; Luo L; Wu J; Guo W; Qin ZH
    FASEB J; 2019 May; 33(5):6082-6098. PubMed ID: 30726106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrauterine growth retardation alters mitochondrial gene expression and function in fetal and juvenile rat skeletal muscle.
    Lane RH; Chandorkar AK; Flozak AS; Simmons RA
    Pediatr Res; 1998 May; 43(5):563-70. PubMed ID: 9585000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.
    Rivera-Brown AM; Frontera WR
    PM R; 2012 Nov; 4(11):797-804. PubMed ID: 23174541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.