These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 22436799)
1. The functional properties of nephronectin: an adhesion molecule for cardiac tissue engineering. Patra C; Ricciardi F; Engel FB Biomaterials; 2012 Jun; 33(17):4327-35. PubMed ID: 22436799 [TBL] [Abstract][Full Text] [Related]
2. Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Patra C; Talukdar S; Novoyatleva T; Velagala SR; Mühlfeld C; Kundu B; Kundu SC; Engel FB Biomaterials; 2012 Mar; 33(9):2673-80. PubMed ID: 22240510 [TBL] [Abstract][Full Text] [Related]
3. The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Shachar M; Tsur-Gang O; Dvir T; Leor J; Cohen S Acta Biomater; 2011 Jan; 7(1):152-62. PubMed ID: 20688198 [TBL] [Abstract][Full Text] [Related]
4. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460 [TBL] [Abstract][Full Text] [Related]
5. Long-term contractile activity and thyroid hormone supplementation produce engineered rat myocardium with adult-like structure and function. Jackman C; Li H; Bursac N Acta Biomater; 2018 Sep; 78():98-110. PubMed ID: 30086384 [TBL] [Abstract][Full Text] [Related]
6. Novel PGS/PCL electrospun fiber mats with patterned topographical features for cardiac patch applications. Tallawi M; Dippold D; Rai R; D'Atri D; Roether JA; Schubert DW; Rosellini E; Engel FB; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():569-76. PubMed ID: 27612749 [TBL] [Abstract][Full Text] [Related]
7. Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Yu J; Lee AR; Lin WH; Lin CW; Wu YK; Tsai WB Tissue Eng Part A; 2014 Jul; 20(13-14):1896-907. PubMed ID: 24471778 [TBL] [Abstract][Full Text] [Related]
8. Cardiac tissue engineering in an in vivo vascularized chamber. Morritt AN; Bortolotto SK; Dilley RJ; Han X; Kompa AR; McCombe D; Wright CE; Itescu S; Angus JA; Morrison WA Circulation; 2007 Jan; 115(3):353-60. PubMed ID: 17200440 [TBL] [Abstract][Full Text] [Related]
9. Engineering an in vitro organotypic model for studying cardiac hypertrophy. Jain A; Hasan J; Desingu PA; Sundaresan NR; Chatterjee K Colloids Surf B Biointerfaces; 2018 May; 165():355-362. PubMed ID: 29518684 [TBL] [Abstract][Full Text] [Related]
12. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Eitan Y; Sarig U; Dahan N; Machluf M Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649 [TBL] [Abstract][Full Text] [Related]
13. Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model. Riegler J; Tiburcy M; Ebert A; Tzatzalos E; Raaz U; Abilez OJ; Shen Q; Kooreman NG; Neofytou E; Chen VC; Wang M; Meyer T; Tsao PS; Connolly AJ; Couture LA; Gold JD; Zimmermann WH; Wu JC Circ Res; 2015 Sep; 117(8):720-30. PubMed ID: 26291556 [TBL] [Abstract][Full Text] [Related]
14. RGD and YIGSR synthetic peptides facilitate cellular adhesion identical to that of laminin and fibronectin but alter the physiology of neonatal cardiac myocytes. Boateng SY; Lateef SS; Mosley W; Hartman TJ; Hanley L; Russell B Am J Physiol Cell Physiol; 2005 Jan; 288(1):C30-8. PubMed ID: 15371257 [TBL] [Abstract][Full Text] [Related]
15. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Das S; Kim SW; Choi YJ; Lee S; Lee SH; Kong JS; Park HJ; Cho DW; Jang J Acta Biomater; 2019 Sep; 95():188-200. PubMed ID: 30986526 [TBL] [Abstract][Full Text] [Related]
16. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes. Sheehy SP; Grosberg A; Qin P; Behm DJ; Ferrier JP; Eagleson MA; Nesmith AP; Krull D; Falls JG; Campbell PH; McCain ML; Willette RN; Hu E; Parker KK Exp Biol Med (Maywood); 2017 Nov; 242(17):1643-1656. PubMed ID: 28343439 [TBL] [Abstract][Full Text] [Related]
17. Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Li Y; Asfour H; Bursac N Acta Biomater; 2017 Jun; 55():120-130. PubMed ID: 28455218 [TBL] [Abstract][Full Text] [Related]
18. Recombinant spider silk protein eADF4(C16)-RGD coatings are suitable for cardiac tissue engineering. Kramer JPM; Aigner TB; Petzold J; Roshanbinfar K; Scheibel T; Engel FB Sci Rep; 2020 May; 10(1):8789. PubMed ID: 32472031 [TBL] [Abstract][Full Text] [Related]
19. Distinct cell-to-fiber junctions are critical for the establishment of cardiotypical phenotype in a 3D bioartificial environment. Kofidis T; Balsam L; de Bruin J; Robbins RC Med Eng Phys; 2004 Mar; 26(2):157-63. PubMed ID: 15036183 [TBL] [Abstract][Full Text] [Related]
20. Reversible inhibition of gap junctional intercellular communication, synchronous contraction, and synchronism of intracellular Ca2+ fluctuation in cultured neonatal rat cardiac myocytes by heptanol. Kimura H; Oyamada Y; Ohshika H; Mori M; Oyamada M Exp Cell Res; 1995 Oct; 220(2):348-56. PubMed ID: 7556443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]