These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22436892)

  • 41. What the bat's voice tells the bat's brain.
    Ulanovsky N; Moss CF
    Proc Natl Acad Sci U S A; 2008 Jun; 105(25):8491-8. PubMed ID: 18562301
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A neural mechanism for detecting the distance of a selected target by modulating the FM sweep rate of biosonar in echolocation of bat.
    Kamata E; Inoue S; Zheng M; Kashimori Y; Kambara T
    Biosystems; 2004; 76(1-3):55-64. PubMed ID: 15351130
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acoustic information available to bats using frequency-modulated sounds for the perception of insect prey.
    Moss CF; Zagaeski M
    J Acoust Soc Am; 1994 May; 95(5 Pt 1):2745-56. PubMed ID: 8207146
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coordination of bat sonar activity and flight for the exploration of three-dimensional objects.
    Genzel D; Geberl C; Dera T; Wiegrebe L
    J Exp Biol; 2012 Jul; 215(Pt 13):2226-35. PubMed ID: 22675183
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Echolocating bats perceive natural-size targets as a unitary class using micro-spectral ripples in echoes.
    Shriram U; Simmons JA
    Behav Neurosci; 2019 Jun; 133(3):297-304. PubMed ID: 31021108
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cortical responses to object size-dependent spectral interference patterns in echolocating bats.
    Firzlaff U; Schuller G
    Eur J Neurosci; 2007 Nov; 26(10):2747-55. PubMed ID: 18001272
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats.
    Metzner W
    Nature; 1989 Oct; 341(6242):529-32. PubMed ID: 2797179
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Duration selectivity of neurons in the inferior colliculus of the big brown bat: tolerance to changes in sound level.
    Fremouw T; Faure PA; Casseday JH; Covey E
    J Neurophysiol; 2005 Sep; 94(3):1869-78. PubMed ID: 15888527
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Range discrimination by big brown bats (Eptesicus fuscus) using altered model echoes: implications for signal processing.
    Masters WM; Raver KA
    J Acoust Soc Am; 2000 Jan; 107(1):625-37. PubMed ID: 10641671
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bats use echo harmonic structure to distinguish their targets from background clutter.
    Bates ME; Simmons JA; Zorikov TV
    Science; 2011 Jul; 333(6042):627-30. PubMed ID: 21798949
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of an auditory model for echo delay accuracy in wideband biosonar.
    Sanderson MI; Neretti N; Intrator N; Simmons JA
    J Acoust Soc Am; 2003 Sep; 114(3):1648-59. PubMed ID: 14514218
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acuity in ranging based on delay-tuned combination-sensitive neurons in the auditory cortex of mustached bats.
    Suzuki M; Suga N
    Hear Res; 2017 Jul; 350():189-204. PubMed ID: 28505528
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oscillatory discharges in the auditory midbrain of the big brown bat contribute to coding of echo delay.
    Simmons JA; Simmons AM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):173-187. PubMed ID: 36383255
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temporal binding of neural responses for focused attention in biosonar.
    Simmons JA
    J Exp Biol; 2014 Aug; 217(Pt 16):2834-43. PubMed ID: 25122915
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Object-specific adaptation in the auditory cortex of bats.
    Pastyrik JD; Firzlaff U
    J Neurophysiol; 2022 Sep; 128(3):556-567. PubMed ID: 35946795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-frequency model for echo-delay resolution in wideband biosonar.
    Neretti N; Sanderson MI; Intrator N; Simmons JA
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2137-45. PubMed ID: 12703724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of background clutter on neural discrimination in the bat auditory midbrain.
    Allen KM; Salles A; Park S; Elhilali M; Moss CF
    J Neurophysiol; 2021 Nov; 126(5):1772-1782. PubMed ID: 34669503
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acoustic image representation of a point target in the bat Eptesicus fuscus: evidence for sensitivity to echo phase in bat sonar.
    Moss CF; Simmons JA
    J Acoust Soc Am; 1993 Mar; 93(3):1553-62. PubMed ID: 8473609
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptive echolocation behavior in bats for the analysis of auditory scenes.
    Chiu C; Xian W; Moss CF
    J Exp Biol; 2009 May; 212(Pt 9):1392-404. PubMed ID: 19376960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Classification of natural textures in echolocation.
    Grunwald JE; Schörnich S; Wiegrebe L
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5670-4. PubMed ID: 15060282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.