These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 22436938)

  • 1. Stretching and distortion of a photosensitive polymer film by surface plasmon generated near fields in the vicinity of a nanometer sized metal pin hole.
    König T; Santer S
    Nanotechnology; 2012 Apr; 23(15):155301. PubMed ID: 22436938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled topography change of subdiffraction structures based on photosensitive polymer films induced by surface plasmon polaritons.
    König T; Tsukruk VV; Santer S
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6009-16. PubMed ID: 23701312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of surface plasmon interference by imprinting intensity patterns on a photosensitive polymer.
    König T; Santer S
    Nanotechnology; 2012 Dec; 23(48):485304. PubMed ID: 23124330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves.
    Papke T; Yadavalli NS; Henkel C; Santer S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14174-80. PubMed ID: 25046798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase singularity of surface plasmon polaritons generated by optical vortices.
    Tan PS; Yuan GH; Wang Q; Zhang N; Zhang DH; Yuan XC
    Opt Lett; 2011 Aug; 36(16):3287-9. PubMed ID: 21847236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization dependence and independence of near-field enhancement through a subwavelength circle hole.
    Li ZB; Zhou WY; Kong XT; Tian JG
    Opt Express; 2010 Mar; 18(6):5854-60. PubMed ID: 20389602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above.
    Yadavalli NS; Korolkov D; Moulin JF; Krutyeva M; Santer S
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11333-40. PubMed ID: 24995460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films.
    Loebner S; Jelken J; Yadavalli NS; Sava E; Hurduc N; Santer S
    Molecules; 2016 Dec; 21(12):. PubMed ID: 27918473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of the polarization dependence of the optical transmission in subwavelength metal hole arrays.
    Zhao Q; Li C; Zhou YS; Wang HY
    J Phys Condens Matter; 2011 Jan; 23(1):015005. PubMed ID: 21406820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon near-field imaging of very thin microstructured polymer layers.
    Weeber JC; Finot E; Legay G; Cathelat A; Lacroute Y; Dereux A
    Langmuir; 2004 Nov; 20(23):10179-85. PubMed ID: 15518511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-field optical patterning and structuring based on local-field enhancement at the extremity of a metal tip.
    Royer P; Barchiesi D; Lerondel G; Bachelot R
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):821-42. PubMed ID: 15306496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells.
    Baba A; Aoki N; Shinbo K; Kato K; Kaneko F
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):2080-4. PubMed ID: 21591626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of plasmon destructive interferences on optical properties of gold planar quadrumers.
    Rahmani M; Tahmasebi T; Lin Y; Lukiyanchuk B; Liew TY; Hong MH
    Nanotechnology; 2011 Jun; 22(24):245204. PubMed ID: 21543829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanolithography method by using localized surface plasmon mask generated with polydimethylsiloxane soft mold on thin metal film.
    Zhang Y; Dong X; Du J; Wei X; Shi L; Deng Q; Du C
    Opt Lett; 2010 Jul; 35(13):2143-5. PubMed ID: 20596174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling surface plasmon interference in branched silver nanowire structures.
    Wei H; Xu H
    Nanoscale; 2012 Nov; 4(22):7149-54. PubMed ID: 23070268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discontinuity induced angular distribution of photon plasmon coupling.
    Brissinger D; Lereu AL; Salomon L; Charvolin T; Cluzel B; Dumas C; Passian A; de Fornel F
    Opt Express; 2011 Aug; 19(18):17750-7. PubMed ID: 21935142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic nanoparticle networks for light and heat concentration.
    Sanchot A; Baffou G; Marty R; Arbouet A; Quidant R; Girard C; Dujardin E
    ACS Nano; 2012 Apr; 6(4):3434-40. PubMed ID: 22394263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array.
    Zhang B; Zhao Y; Hao Q; Kiraly B; Khoo IC; Chen S; Huang TJ
    Opt Express; 2011 Aug; 19(16):15221-8. PubMed ID: 21934885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible tuning of plasmon coupling in gold nanoparticle chains using ultrathin responsive polymer film.
    Nergiz SZ; Singamaneni S
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):945-51. PubMed ID: 21381739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.