These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22437046)

  • 1. Analysis of reasons for decline of bioleaching efficiency of spent Zn-Mn batteries at high pulp densities and exploration measure for improving performance.
    Xin B; Jiang W; Li X; Zhang K; Liu C; Wang R; Wang Y
    Bioresour Technol; 2012 May; 112():186-92. PubMed ID: 22437046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration.
    Xin B; Jiang W; Aslam H; Zhang K; Liu C; Wang R; Wang Y
    Bioresour Technol; 2012 Feb; 106():147-53. PubMed ID: 22204887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10.
    Niu Z; Huang Q; Wang J; Yang Y; Xin B; Chen S
    J Hazard Mater; 2015 Nov; 298():170-7. PubMed ID: 26057441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of manganese from electrolytic manganese residue by bioleaching.
    Xin B; Chen B; Duan N; Zhou C
    Bioresour Technol; 2011 Jan; 102(2):1683-7. PubMed ID: 21050747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration.
    Niu Z; Zou Y; Xin B; Chen S; Liu C; Li Y
    Chemosphere; 2014 Aug; 109():92-8. PubMed ID: 24873712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria.
    Xin B; Zhang D; Zhang X; Xia Y; Wu F; Chen S; Li L
    Bioresour Technol; 2009 Dec; 100(24):6163-9. PubMed ID: 19656671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes.
    Buzatu T; Popescu G; Birloaga I; Săceanu S
    Waste Manag; 2013 Mar; 33(3):699-705. PubMed ID: 23158875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans.
    Bayat O; Sever E; Bayat B; Arslan V; Poole C
    Appl Biochem Biotechnol; 2009 Jan; 152(1):117-26. PubMed ID: 18581266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries.
    El-Nadi YA; Daoud JA; Aly HF
    J Hazard Mater; 2007 May; 143(1-2):328-34. PubMed ID: 17049161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample.
    Marhual NP; Pradhan N; Kar RN; Sukla LB; Mishra BK
    Bioresour Technol; 2008 Nov; 99(17):8331-6. PubMed ID: 18434140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of metal bioleaching from contaminated sediment using silver ion.
    Chen SY; Lin JG
    J Hazard Mater; 2009 Jan; 161(2-3):893-9. PubMed ID: 18514400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species.
    Kim MJ; Seo JY; Choi YS; Kim GH
    Waste Manag; 2016 May; 51():168-173. PubMed ID: 26584557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly efficient process to enhance the bioleaching of spent lithium-ion batteries by bifunctional pyrite combined with elemental sulfur.
    Liu Z; Liao X; Zhang Y; Li S; Ye M; Gan Q; Fang X; Mo Z; Huang Y; Liang Z; Dai W; Sun S
    J Environ Manage; 2024 Feb; 351():119954. PubMed ID: 38169252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger.
    Bahaloo-Horeh N; Mousavi SM
    Waste Manag; 2017 Feb; 60():666-679. PubMed ID: 27825532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration.
    Chen SY; Lin JG
    Water Res; 2004; 38(14-15):3205-14. PubMed ID: 15276736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni-Cd batteries.
    Velgosová O; Kaduková J; Marcinčáková R; Palfy P; Trpčevská J
    Waste Manag; 2013 Feb; 33(2):456-61. PubMed ID: 23131752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bioleaching feasibility for Pb/Zn smelting slag and community characteristics of indigenous moderate-thermophilic bacteria.
    Cheng Y; Guo Z; Liu X; Yin H; Qiu G; Pan F; Liu H
    Bioresour Technol; 2009 May; 100(10):2737-40. PubMed ID: 19171481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10.
    Qu Y; Lian B
    Bioresour Technol; 2013 May; 136():16-23. PubMed ID: 23548400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.