These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 22437210)

  • 1. Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis.
    Lam RH; Sun Y; Chen W; Fu J
    Lab Chip; 2012 Apr; 12(10):1865-73. PubMed ID: 22437210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic regulation of cell function by matrix rigidity and adhesive pattern.
    Weng S; Fu J
    Biomaterials; 2011 Dec; 32(36):9584-93. PubMed ID: 21955687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction.
    Shao Y; Mann JM; Chen W; Fu J
    Integr Biol (Camb); 2014 Mar; 6(3):300-11. PubMed ID: 24435061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Live-cell subcellular measurement of cell stiffness using a microengineered stretchable micropost array membrane.
    Lam RH; Weng S; Lu W; Fu J
    Integr Biol (Camb); 2012 Oct; 4(10):1289-98. PubMed ID: 22935822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical regulation of cell function with geometrically modulated elastomeric substrates.
    Fu J; Wang YK; Yang MT; Desai RA; Yu X; Liu Z; Chen CS
    Nat Methods; 2010 Sep; 7(9):733-6. PubMed ID: 20676108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function.
    Hattori K; Munehira Y; Kobayashi H; Satoh T; Sugiura S; Kanamori T
    J Biosci Bioeng; 2014 Sep; 118(3):327-32. PubMed ID: 24630614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response.
    Mann JM; Lam RH; Weng S; Sun Y; Fu J
    Lab Chip; 2012 Feb; 12(4):731-40. PubMed ID: 22193351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications.
    Mosadegh B; Agarwal M; Torisawa YS; Takayama S
    Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic model of angiogenic sprouting.
    Song JW; Bazou D; Munn LL
    Methods Mol Biol; 2015; 1214():243-54. PubMed ID: 25468609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow.
    Rossi M; Lindken R; Hierck BP; Westerweel J
    Lab Chip; 2009 May; 9(10):1403-11. PubMed ID: 19417907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity.
    Yang MT; Fu J; Wang YK; Desai RA; Chen CS
    Nat Protoc; 2011 Feb; 6(2):187-213. PubMed ID: 21293460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic traction force microscopy to study mechanotransduction in angiogenesis.
    Boldock L; Wittkowske C; Perrault CM
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28164414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. See-saw rocking: an in vitro model for mechanotransduction research.
    Tucker RP; Henningsson P; Franklin SL; Chen D; Ventikos Y; Bomphrey RJ; Thompson MS
    J R Soc Interface; 2014 Aug; 11(97):20140330. PubMed ID: 24898022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus.
    Milan JL; Manifacier I; Beussman KM; Han SJ; Sniadecki NJ; About I; Chabrand P
    J Biomech; 2016 Sep; 49(13):2625-2634. PubMed ID: 27298154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micropatterning on micropost arrays.
    Sniadecki NJ; Han SJ; Ting LH; Feghhi S
    Methods Cell Biol; 2014; 121():61-73. PubMed ID: 24560503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RhoA mediates flow-induced endothelial sprouting in a 3-D tissue analogue of angiogenesis.
    Song JW; Daubriac J; Tse JM; Bazou D; Munn LL
    Lab Chip; 2012 Dec; 12(23):5000-6. PubMed ID: 23073300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple microfluidic device to study cell-scale endothelial mechanotransduction.
    Lafaurie-Janvore J; Antoine EE; Perkins SJ; Babataheri A; Barakat AI
    Biomed Microdevices; 2016 Aug; 18(4):63. PubMed ID: 27402497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic microposts for mechanical stimulation of biological cells: fabrication, characterization, and analysis.
    Sniadecki NJ; Lamb CM; Liu Y; Chen CS; Reich DH
    Rev Sci Instrum; 2008 Apr; 79(4):044302. PubMed ID: 18447536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic microposts as an approach to apply forces to living cells.
    Sniadecki NJ; Anguelouch A; Yang MT; Lamb CM; Liu Z; Kirschner SB; Liu Y; Reich DH; Chen CS
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14553-8. PubMed ID: 17804810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.