BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22437739)

  • 1. Relationship between rates of respiratory proton extrusion and ATP synthesis in obligately alkaliphilic Bacillus clarkii DSM 8720(T).
    Hirabayashi T; Goto T; Morimoto H; Yoshimune K; Matsuyama H; Yumoto I
    J Bioenerg Biomembr; 2012 Apr; 44(2):265-72. PubMed ID: 22437739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of intracellular negative ion capacity to Donnan effect across the membrane in alkaliphilic Bacillus spp.
    Goto T; Hirabayashi T; Morimoto H; Yamazaki K; Inoue N; Matsuyama H; Yumoto I
    J Bioenerg Biomembr; 2016 Feb; 48(1):87-96. PubMed ID: 26749514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The obligate alkaliphile Bacillus clarkii K24-1U retains extruded protons at the beginning of respiration.
    Yoshimune K; Morimoto H; Hirano Y; Sakamoto J; Matsuyama H; Yumoto I
    J Bioenerg Biomembr; 2010 Apr; 42(2):111-6. PubMed ID: 20306123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in Bioenergetic Metabolism of Obligately Alkaliphilic
    Goto T; Ogami S; Yoshimume K; Yumoto I
    Front Microbiol; 2022; 13():842785. PubMed ID: 35401478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Proton Motive Force Under Low-Aeration Alkaline Conditions in Alkaliphilic Bacteria.
    Matsuno T; Goto T; Ogami S; Morimoto H; Yamazaki K; Inoue N; Matsuyama H; Yoshimune K; Yumoto I
    Front Microbiol; 2018; 9():2331. PubMed ID: 30333809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH homeostasis and ATP synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species.
    Krulwich TA; Ito M; Hicks DB; Gilmour R; Guffanti AA
    Extremophiles; 1998 Aug; 2(3):217-22. PubMed ID: 9783168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic equivalence of transmembrane pH and electrical potential differences in ATP synthesis.
    Soga N; Kinosita K; Yoshida M; Suzuki T
    J Biol Chem; 2012 Mar; 287(12):9633-9. PubMed ID: 22253434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp.
    Goto T; Matsuno T; Hishinuma-Narisawa M; Yamazaki K; Matsuyama H; Inoue N; Yumoto I
    J Biosci Bioeng; 2005 Oct; 100(4):365-79. PubMed ID: 16310725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis.
    Pitard B; Richard P; Duñach M; Rigaud JL
    Eur J Biochem; 1996 Feb; 235(3):779-88. PubMed ID: 8654429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Features of apparent nonchemiosmotic energization of oxidative phosphorylation by alkaliphilic Bacillus firmus OF4.
    Guffanti AA; Krulwich TA
    J Biol Chem; 1992 May; 267(14):9580-8. PubMed ID: 1577797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ability of acidic pH, growth inhibitors, and glucose to increase the proton motive force and energy spilling of amino acid-fermenting Clostridium sporogenes MD1 cultures.
    Flythe MD; Russell JB
    Arch Microbiol; 2005 May; 183(4):236-42. PubMed ID: 15891933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrochemical proton potential of Bacillus alcalophilus.
    Hoffmann A; Dimroth P
    Eur J Biochem; 1991 Oct; 201(2):467-73. PubMed ID: 1657600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of Alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5.
    Wang Z; Hicks DB; Guffanti AA; Baldwin K; Krulwich TA
    J Biol Chem; 2004 Jun; 279(25):26546-54. PubMed ID: 15024007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous energy supply to the plasma membrane of dark anaerobic cyanobacterium Anacystis nidulans: thermodynamic and kinetic characterization of the ATP synthesis effected by an artificial proton motive force.
    Peschek GA; Hinterstoisser B; Riedler M; Muchl R; Nitschmann WH
    Arch Biochem Biophys; 1986 May; 247(1):40-8. PubMed ID: 3010879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in Bacillus pasteurii.
    Jahns T
    J Bacteriol; 1996 Jan; 178(2):403-9. PubMed ID: 8550459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential.
    Dimroth P; Cook GM
    Adv Microb Physiol; 2004; 49():175-218. PubMed ID: 15518831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A specific adaptation in the a subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values.
    McMillan DG; Keis S; Dimroth P; Cook GM
    J Biol Chem; 2007 Jun; 282(24):17395-404. PubMed ID: 17434874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative measurements of proton motive force and motility in Bacillus subtilis.
    Shioi JI; Matsuura S; Imae Y
    J Bacteriol; 1980 Dec; 144(3):891-7. PubMed ID: 6254950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton in the well and through the desolvation barrier.
    Mulkidjanian AY
    Biochim Biophys Acta; 2006; 1757(5-6):415-27. PubMed ID: 16780789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations.
    Hicks DB; Liu J; Fujisawa M; Krulwich TA
    Biochim Biophys Acta; 2010 Aug; 1797(8):1362-77. PubMed ID: 20193659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.