These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 22438040)
1. New insights into the ecological interaction between grape berry microorganisms and Drosophila flies during the development of sour rot. Barata A; Santos SC; Malfeito-Ferreira M; Loureiro V Microb Ecol; 2012 Aug; 64(2):416-30. PubMed ID: 22438040 [TBL] [Abstract][Full Text] [Related]
2. The microbial ecology of wine grape berries. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021 [TBL] [Abstract][Full Text] [Related]
3. Grape Sour Rot: A Four-Way Interaction Involving the Host, Yeast, Acetic Acid Bacteria, and Insects. Hall ME; Loeb GM; Cadle-Davidson L; Evans KJ; Wilcox WF Phytopathology; 2018 Dec; 108(12):1429-1442. PubMed ID: 29969063 [TBL] [Abstract][Full Text] [Related]
4. The epiphytic microbiota of sour rot-affected grapes differs minimally from that of healthy grapes, indicating causal organisms are already present on healthy berries. Hall ME; O'Bryon I; Wilcox WF; Osier MV; Cadle-Davidson L PLoS One; 2019; 14(3):e0211378. PubMed ID: 30917111 [TBL] [Abstract][Full Text] [Related]
5. Efficacy of gaseous ozone to counteract postharvest table grape sour rot. Pinto L; Caputo L; Quintieri L; de Candia S; Baruzzi F Food Microbiol; 2017 Sep; 66():190-198. PubMed ID: 28576368 [TBL] [Abstract][Full Text] [Related]
6. Growth and metabolite production of a grape sour rot yeast-bacterium consortium on different carbon sources. Pinto L; Malfeito-Ferreira M; Quintieri L; Silva AC; Baruzzi F Int J Food Microbiol; 2019 May; 296():65-74. PubMed ID: 30851642 [TBL] [Abstract][Full Text] [Related]
7. Changes in sour rotten grape berry microbiota during ripening and wine fermentation. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Mar; 154(3):152-61. PubMed ID: 22277696 [TBL] [Abstract][Full Text] [Related]
8. Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape. Ioriatti C; Guzzon R; Anfora G; Ghidoni F; Mazzoni V; Villegas TR; Dalton DT; Walton VM J Econ Entomol; 2018 Feb; 111(1):283-292. PubMed ID: 29202199 [TBL] [Abstract][Full Text] [Related]
9. The emerging contribution of social wasps to grape rot disease ecology. Madden AA; Boyden SD; Soriano JN; Corey TB; Leff JW; Fierer N; Starks PT PeerJ; 2017; 5():e3223. PubMed ID: 28462032 [TBL] [Abstract][Full Text] [Related]
10. Volatiles of Grape Inoculated with Microorganisms: Modulation of Grapevine Moth Oviposition and Field Attraction. Tasin M; Larsson Herrera S; Knight AL; Barros-Parada W; Fuentes Contreras E; Pertot I Microb Ecol; 2018 Oct; 76(3):751-761. PubMed ID: 29526022 [TBL] [Abstract][Full Text] [Related]
11. Sour rot-damaged grapes are sources of wine spoilage yeasts. Barata A; González S; Malfeito-Ferreira M; Querol A; Loureiro V FEMS Yeast Res; 2008 Nov; 8(7):1008-17. PubMed ID: 18554306 [TBL] [Abstract][Full Text] [Related]
12. Ascomycetous yeast species recovered from grapes damaged by honeydew and sour rot. Barata A; Seborro F; Belloch C; Malfeito-Ferreira M; Loureiro V J Appl Microbiol; 2008 Apr; 104(4):1182-91. PubMed ID: 17976167 [TBL] [Abstract][Full Text] [Related]
13. First Report of Aspergillus carbonarius Causing Sour Rot of Table Grapes (Vitis vinifera) in California. Rooney-Latham S; Janousek CN; Eskalen A; Gubler WD Plant Dis; 2008 Apr; 92(4):651. PubMed ID: 30769622 [TBL] [Abstract][Full Text] [Related]
14. Native yeast and non-yeast fungal communities of Cabernet Sauvignon berries from two Washington State vineyards, and persistence in spontaneous fermentation. Wang X; Schlatter DC; Glawe DA; Edwards CG; Weller DM; Paulitz TC; Abatzoglou JT; Okubara PA Int J Food Microbiol; 2021 Jul; 350():109225. PubMed ID: 34023678 [TBL] [Abstract][Full Text] [Related]
15. A novel fungal fruiting structure formed by Aspergillus niger and Aspergillus carbonarius in grape berries. Pisani C; Nguyen TT; Gubler WD Fungal Biol; 2015 Sep; 119(9):784-90. PubMed ID: 26321727 [TBL] [Abstract][Full Text] [Related]
16. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
17. Diversity and spoilage potential of microbial communities associated with grape sour rot in eastern coastal areas of China. Gao H; Yin X; Jiang X; Shi H; Yang Y; Wang C; Dai X; Chen Y; Wu X PeerJ; 2020; 8():e9376. PubMed ID: 32607286 [TBL] [Abstract][Full Text] [Related]
18. Candida sake CPA-1 and other biologically based products as potential control strategies to reduce sour rot of grapes. Calvo-Garrido C; Viñas I; Elmer P; Usall J; Teixidó N Lett Appl Microbiol; 2013 Oct; 57(4):356-61. PubMed ID: 23789778 [TBL] [Abstract][Full Text] [Related]
19. Drosophila suzukii (Diptera: Drosophilidae) and its Potential Impact to Wine Grapes During Harvest in Two Cool Climate Wine Grape Production Regions. Ioriatti C; Walton V; Dalton D; Anfora G; Grassi A; Maistri S; Mazzoni V J Econ Entomol; 2015 Jun; 108(3):1148-55. PubMed ID: 26470240 [TBL] [Abstract][Full Text] [Related]