These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22438329)

  • 1. Synthesis of antimony-based nanowires using the simple vapor deposition method.
    Zi Y; Zhao Y; Candebat D; Appenzeller J; Yang C
    Chemphyschem; 2012 Jul; 13(10):2585-8. PubMed ID: 22438329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors.
    Yang ZX; Han N; Wang F; Cheung HY; Shi X; Yip S; Hung T; Lee MH; Wong CY; Ho JC
    Nanoscale; 2013 Oct; 5(20):9671-6. PubMed ID: 24056889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires.
    Wang F; Seo JH; Bayerl D; Shi J; Mi H; Ma Z; Zhao D; Shuai Y; Zhou W; Wang X
    Nanotechnology; 2011 Jun; 22(22):225602. PubMed ID: 21454935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires.
    Yang ZX; Han N; Fang M; Lin H; Cheung HY; Yip S; Wang EJ; Hung T; Wong CY; Ho JC
    Nat Commun; 2014 Oct; 5():5249. PubMed ID: 25319499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel chemical-vapor deposition technique for the synthesis of high-quality single-crystal nanowires and nanotubes.
    He M; Mohammad SN
    J Chem Phys; 2006 Feb; 124(6):64714. PubMed ID: 16483236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can antimonide-based nanowires form wurtzite crystal structure?
    Gorji Ghalamestani S; Lehmann S; Dick KA
    Nanoscale; 2016 Feb; 8(5):2778-86. PubMed ID: 26763161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser direct synthesis of silicon nanowire field effect transistors.
    Nam W; Mitchell JI; Ye PD; Xu X
    Nanotechnology; 2015 Feb; 26(5):055306. PubMed ID: 25590692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Self-Catalyzed Epitaxial Growth of III-V Nanowires toward Controlled Synthesis.
    Zi Y; Suslov S; Yang C
    Nano Lett; 2017 Feb; 17(2):1167-1173. PubMed ID: 28103043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale synthesis and in situ functionalization of Zn3P2 and Zn4Sb3 nanowire powders.
    Brockway L; Van Laer M; Kang Y; Vaddiraju S
    Phys Chem Chem Phys; 2013 May; 15(17):6260-7. PubMed ID: 23519015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch.
    Caroff P; Messing ME; Mattias Borg B; Dick KA; Deppert K; Wernersson LE
    Nanotechnology; 2009 Dec; 20(49):495606. PubMed ID: 19904026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of initial growth of ZnO nanowires and their growth mechanism.
    Jeong JS; Lee JY
    Nanotechnology; 2010 Nov; 21(47):475603. PubMed ID: 21030769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective-Area MOCVD Growth and Carrier-Transport-Type Control of InAs(Sb)/GaSb Core-Shell Nanowires.
    Ji X; Yang X; Du W; Pan H; Yang T
    Nano Lett; 2016 Dec; 16(12):7580-7587. PubMed ID: 27960521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical Vapor Deposition.
    Yang ZX; Liu L; Yip S; Li D; Shen L; Zhou Z; Han N; Hung TF; Pun EY; Wu X; Song A; Ho JC
    ACS Nano; 2017 Apr; 11(4):4237-4246. PubMed ID: 28355076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state diffusion as an efficient doping method for silicon nanowires and nanowire field effect transistors.
    Moselund KE; Ghoneim H; Schmid H; Björk MT; Lörtscher E; Karg S; Signorello G; Webb D; Tschudy M; Beyeler R; Riel H
    Nanotechnology; 2010 Oct; 21(43):435202. PubMed ID: 20890021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of High Material Quality Group III-Antimonide Semiconductor Nanowires by a Naturally Cooling Process.
    Li K; Pan W; Wang J; Pan H; Huang S; Xing Y; Xu HQ
    Nanoscale Res Lett; 2016 Dec; 11(1):222. PubMed ID: 27112353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniform and position-controlled InAs nanowires on 2" Si substrates for transistor applications.
    Ghalamestani SG; Johansson S; Borg BM; Lind E; Dick KA; Wernersson LE
    Nanotechnology; 2012 Jan; 23(1):015302. PubMed ID: 22155896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystalline GaSb nanowires synthesized on amorphous substrates: from the formation mechanism to p-channel transistor applications.
    Yang ZX; Wang F; Han N; Lin H; Cheung HY; Fang M; Yip S; Hung T; Wong CY; Ho JC
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10946-52. PubMed ID: 24107082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy.
    Mølhave K; Wacaser BA; Petersen DH; Wagner JB; Samuelson L; Bøggild P
    Small; 2008 Oct; 4(10):1741-6. PubMed ID: 18819133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foreign-catalyst-free GaSb nanowires directly grown on cleaved Si substrates by molecular-beam epitaxy.
    Wen L; Pan D; Liao D; Zhao J
    Nanotechnology; 2020 Apr; 31(15):155601. PubMed ID: 31783375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of Sn-seeded GaSb homo- and GaAs-GaSb heterostructural nanowires.
    Tornberg M; Mårtensson EK; Zamani RR; Lehmann S; Dick KA; Ghalamestani SG
    Nanotechnology; 2016 Apr; 27(17):175602. PubMed ID: 26984940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.