These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22438747)

  • 1. Electrical model of a carbon-polymer composite (CPC) collision detector.
    Kruusamäe K; Punning A; Aabloo A
    Sensors (Basel); 2012; 12(2):1950-66. PubMed ID: 22438747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical resistivity-based study of self-sensing properties for shape memory alloy-actuated artificial muscle.
    Zhang JJ; Yin YH; Zhu JY
    Sensors (Basel); 2013 Sep; 13(10):12958-74. PubMed ID: 24077316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical impedance properties of carbon nanotube composite electrodes for chemical and biosensor.
    So DS; Kang I; Huh H; Lee H
    J Nanosci Nanotechnol; 2010 May; 10(5):3449-52. PubMed ID: 20358976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of electromechanical coupling parameters of piezoelectric materials by using piezoelectric cantilever with coplanar electrode structure in quasi-stasis.
    Zheng X; Zhu Y; Liu X; Liu J; Zhang Y; Chen J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):369-75. PubMed ID: 24474142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode position optimization in magnetoelectric sensors based on magnetostrictive-piezoelectric bilayers on cantilever substrates.
    Bala UB; Krantz MC; Gerken M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar; 61(3):392-8. PubMed ID: 24569244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling electrical response of polymer-coated SAW resonators by equivalent circuit representation.
    Kshetrimayum R; Yadava RD; Tandon RP
    Ultrasonics; 2011 Jul; 51(5):547-53. PubMed ID: 21236460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible three-axial force sensor for soft and highly sensitive artificial touch.
    Viry L; Levi A; Totaro M; Mondini A; Mattoli V; Mazzolai B; Beccai L
    Adv Mater; 2014 May; 26(17):2659-64, 2614. PubMed ID: 24677245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors.
    Li J; Lee EC
    Biosens Bioelectron; 2015 Sep; 71():414-419. PubMed ID: 25950937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Carbon-Based Ionic Electromechanically Active Soft Actuators.
    Rinne P; Põldsalu I; Ratas HK; Kruusamäe K; Johanson U; Tamm T; Põhako-Esko K; Punning A; Peikolainen AL; Kaasik F; Must I; van den Ende D; Aabloo A
    J Vis Exp; 2020 Apr; (158):. PubMed ID: 32391818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the sensor response of metal-decorated carbon nanotubes.
    Kauffman DR; Sorescu DC; Schofield DP; Allen BL; Jordan KD; Star A
    Nano Lett; 2010 Mar; 10(3):958-63. PubMed ID: 20155969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.
    Shen Q; Wang T; Kim KJ
    Bioinspir Biomim; 2015 Sep; 10(5):055007. PubMed ID: 26414228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-inspired flow sensor from printed PEDOT:PSS micro-hairs.
    Devaraj H; Travas-Sejdic J; Sharma R; Aydemir N; Williams D; Haemmerle E; Aw KC
    Bioinspir Biomim; 2015 Feb; 10(1):016017. PubMed ID: 25650357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hysteresis in a carbon nanotube based electroactive polymer microfiber actuator: numerical modeling.
    Sohn K; Shin SR; Park SJ; Kim SJ; Yi BJ; Han SY; Kim SI
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3974-9. PubMed ID: 18047099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a chemiresistive sensor-integrated electronic nose: a review.
    Chiu SW; Tang KT
    Sensors (Basel); 2013 Oct; 13(10):14214-47. PubMed ID: 24152879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Touch at a distance sensing: lateral-line inspired MEMS flow sensors.
    Prakash Kottapalli AG; Asadnia M; Miao J; Triantafyllou M
    Bioinspir Biomim; 2014 Nov; 9(4):046011. PubMed ID: 25378298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites.
    Chen L; Liu C; Liu K; Meng C; Hu C; Wang J; Fan S
    ACS Nano; 2011 Mar; 5(3):1588-93. PubMed ID: 21309550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An organic electronic biomimetic neuron enables auto-regulated neuromodulation.
    Simon DT; Larsson KC; Nilsson D; Burström G; Galter D; Berggren M; Richter-Dahlfors A
    Biosens Bioelectron; 2015 Sep; 71():359-364. PubMed ID: 25932795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic sensing layer based on electrospun conductive polymer webs.
    Zampetti E; Pantalei S; Scalese S; Bearzotti A; De Cesare F; Spinella C; Macagnano A
    Biosens Bioelectron; 2011 Jan; 26(5):2460-5. PubMed ID: 21093248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using hardware models to quantify sensory data acquisition across the rat vibrissal array.
    Gopal V; Hartmann MJ
    Bioinspir Biomim; 2007 Dec; 2(4):S135-45. PubMed ID: 18037723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.
    Feng GH; Huang WL
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():241-9. PubMed ID: 25491826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.