These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 22438912)

  • 1. A computational mechanism for unified gain and timing control in the cerebellum.
    Yamazaki T; Nagao S
    PLoS One; 2012; 7(3):e33319. PubMed ID: 22438912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit.
    Yamazaki T; Igarashi J
    Neural Netw; 2013 Nov; 47():103-11. PubMed ID: 23434303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.
    Inagaki K; Hirata Y
    Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamical model for the vertical vestibuloocular reflex and optokinetic response in primate.
    Hirata Y; Takeuchi I; Highstein SM
    Neurocomputing (Amst); 2003 Jun; 52-54():531-40. PubMed ID: 12934604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of diverse recoding of granule cells on optokinetic response in a cerebellar ring network with synaptic plasticity.
    Kim SY; Lim W
    Neural Netw; 2021 Feb; 134():173-204. PubMed ID: 33316723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebellar Processing Common to Delay and Trace Eyelid Conditioning.
    Halverson HE; Khilkevich A; Mauk MD
    J Neurosci; 2018 Aug; 38(33):7221-7236. PubMed ID: 30012691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor dynamics encoding in the rostral zone of the cat cerebellar flocculus during vertical optokinetic eye movements.
    Mizukoshi A; Kitama T; Omata T; Ueno T; Kawato M; Sato Y
    Exp Brain Res; 2000 May; 132(2):260-8. PubMed ID: 10853950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased occurrence of climbing fiber inputs to the cerebellar flocculus in a mutant mouse is correlated with the timing delay of optokinetic response.
    Yoshida T; Funabiki K; Hirano T
    Eur J Neurosci; 2007 Mar; 25(5):1467-74. PubMed ID: 17425572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor dynamics encoding in cat cerebellar flocculus middle zone during optokinetic eye movements.
    Kitama T; Omata T; Mizukoshi A; Ueno T; Sato Y
    J Neurophysiol; 1999 Nov; 82(5):2235-48. PubMed ID: 10561402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of granule-cell transmission in memory trace of cerebellum-dependent optokinetic motor learning.
    Wada N; Funabiki K; Nakanishi S
    Proc Natl Acad Sci U S A; 2014 Apr; 111(14):5373-8. PubMed ID: 24706878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cerebellum and VOR/OKR learning models.
    Kawato M; Gomi H
    Trends Neurosci; 1992 Nov; 15(11):445-53. PubMed ID: 1281352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebellar Role in Predictive Control of Eye Velocity Initiation and Termination.
    Miki S; Baker R; Hirata Y
    J Neurosci; 2018 Nov; 38(48):10371-10383. PubMed ID: 30355638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate receptor delta2 subunit or Purkinje cells.
    Katoh A; Yoshida T; Himeshima Y; Mishina M; Hirano T
    Eur J Neurosci; 2005 Mar; 21(5):1315-26. PubMed ID: 15813941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum.
    Shidara M; Kawano K; Gomi H; Kawato M
    Nature; 1993 Sep; 365(6441):50-2. PubMed ID: 8361536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.
    Geminiani A; Casellato C; Antonietti A; D'Angelo E; Pedrocchi A
    Int J Neural Syst; 2018 Jun; 28(5):1750017. PubMed ID: 28264639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased intrinsic excitability of cerebellar Purkinje cells following optokinetic learning in mice.
    Kim YG; Kim SJ
    Mol Brain; 2020 Oct; 13(1):136. PubMed ID: 33028375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells.
    Hirata Y; Highstein SM
    J Neurophysiol; 2001 May; 85(5):2267-88. PubMed ID: 11353040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording eye movements in mice: a new approach to investigate the molecular basis of cerebellar control of motor learning and motor timing.
    de Zeeuw CI; van Alphen AM; Koekkoek SK; Buharin E; Coesmans MP; Morpurgo MM; van den Burg J
    Otolaryngol Head Neck Surg; 1998 Sep; 119(3):193-203. PubMed ID: 9743075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation.
    Barmack NH; Shojaku H
    J Neurophysiol; 1995 Dec; 74(6):2573-89. PubMed ID: 8747215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.