These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22438956)

  • 1. Mechanisms of adaptation from a multiple to a single step recovery strategy following repeated exposure to forward loss of balance in older adults.
    Carty CP; Cronin NJ; Lichtwark GA; Mills PM; Barrett RS
    PLoS One; 2012; 7(3):e33591. PubMed ID: 22438956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive recovery responses to repeated forward loss of balance in older adults.
    Barrett RS; Cronin NJ; Lichtwark GA; Mills PM; Carty CP
    J Biomech; 2012 Jan; 45(1):183-7. PubMed ID: 22018681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery from forward loss of balance in young and older adults using the stepping strategy.
    Carty CP; Mills P; Barrett R
    Gait Posture; 2011 Feb; 33(2):261-7. PubMed ID: 21146992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle contributions to recovery from forward loss of balance by stepping.
    Graham DF; Carty CP; Lloyd DG; Lichtwark GA; Barrett RS
    J Biomech; 2014 Feb; 47(3):667-74. PubMed ID: 24360199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hip joint contact loads in older adults during recovery from forward loss of balance by stepping.
    Graham DF; Modenese L; Trewartha G; Carty CP; Constantinou M; Lloyd DG; Barrett RS
    J Biomech; 2016 Sep; 49(13):2619-2624. PubMed ID: 27288331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of lower limb eccentric work and different step responses to balance recovery among older adults.
    Nagano H; Levinger P; Downie C; Hayes A; Begg R
    Gait Posture; 2015 Sep; 42(3):257-62. PubMed ID: 26077787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased lower limb muscle recruitment contributes to the inability of older adults to recover with a single step following a forward loss of balance.
    Cronin NJ; Barrett RS; Lichtwark G; Mills PM; Carty CP
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1139-44. PubMed ID: 23895943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive Balance in Individuals With Chronic Stroke: Biomechanical Factors Related to Perturbation-Induced Backward Falling.
    Salot P; Patel P; Bhatt T
    Phys Ther; 2016 Mar; 96(3):338-47. PubMed ID: 26206220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower limb muscle moments and power during recovery from forward loss of balance in male and female single and multiple steppers.
    Carty CP; Cronin NJ; Lichtwark GA; Mills PM; Barrett RS
    Clin Biomech (Bristol, Avon); 2012 Dec; 27(10):1031-7. PubMed ID: 22871605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical predictors of maximal balance recovery performance amongst community-dwelling older adults.
    Graham DF; Carty CP; Lloyd DG; Barrett RS
    Exp Gerontol; 2015 Jun; 66():39-46. PubMed ID: 25871728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive stepping behaviour in response to forward loss of balance predicts future falls in community-dwelling older adults.
    Carty CP; Cronin NJ; Nicholson D; Lichtwark GA; Mills PM; Kerr G; Cresswell AG; Barrett RS
    Age Ageing; 2015 Jan; 44(1):109-15. PubMed ID: 24918170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower limb muscle weakness predicts use of a multiple- versus single-step strategy to recover from forward loss of balance in older adults.
    Carty CP; Barrett RS; Cronin NJ; Lichtwark GA; Mills PM
    J Gerontol A Biol Sci Med Sci; 2012 Nov; 67(11):1246-52. PubMed ID: 22879450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention and generalizability of balance recovery response adaptations from trip perturbations across the adult life span.
    König M; Epro G; Seeley J; Potthast W; Karamanidis K
    J Neurophysiol; 2019 Nov; 122(5):1884-1893. PubMed ID: 31509470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of age and lean direction on the threshold of single-step balance recovery in younger, middle-aged and older adults.
    Carbonneau E; Smeesters C
    Gait Posture; 2014; 39(1):365-71. PubMed ID: 24035174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does aging with a cortical lesion increase fall-risk: Examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations.
    Patel PJ; Bhatt T
    Neuroscience; 2016 Oct; 333():252-63. PubMed ID: 27418344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age and gender differences in single-step recovery from a forward fall.
    Wojcik LA; Thelen DG; Schultz AB; Ashton-Miller JA; Alexander NB
    J Gerontol A Biol Sci Med Sci; 1999 Jan; 54(1):M44-50. PubMed ID: 10026662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Older adults exhibit variable responses in stepping behaviour following unexpected forward perturbations during gait initiation.
    Shulman D; Spencer A; Ann Vallis L
    Hum Mov Sci; 2019 Feb; 63():120-128. PubMed ID: 30513458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volitional step execution is an ineffective predictor of recovery performance after sudden balance loss across the age range.
    Werth J; König M; Epro G; Seeley J; Potthast W; Karamanidis K
    Hum Mov Sci; 2021 Apr; 76():102769. PubMed ID: 33581561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elderly subjects' ability to recover balance with a single backward step associates with body configuration at step contact.
    Hsiao ET; Robinovitch SN
    J Gerontol A Biol Sci Med Sci; 2001 Jan; 56(1):M42-7. PubMed ID: 11193232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of measures of dynamic stability for the assessment of balance recovery after a forward loss of balance.
    Ringhof S; Arensmann A; Stein T
    Gait Posture; 2019 Jun; 71():261-266. PubMed ID: 31100614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.