These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22439242)

  • 21. [Changes in peripheral blood T lymphocyte subsets of rabbits in early stage after transplantation of tissue engineered bone constituted by biologically-derived scaffold].
    Li Y; Yang Z; Qin T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):130-4. PubMed ID: 17357458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tissue-engineered bone formation in vivo for artificial laminae of the vertebral arch using β-tricalcium phosphate bioceramics seeded with mesenchymal stem cells.
    Dong Y; Chen X; Hong Y
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1300-6. PubMed ID: 23873227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergetic effects of hBMSCs and hPCs in osteogenic differentiation and their capacity in the repair of critical-sized femoral condyle defects.
    Chen D; Shen H; He Y; Chen Y; Wang Q; Lu J; Jiang Y
    Mol Med Rep; 2015 Feb; 11(2):1111-9. PubMed ID: 25373389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leporine-derived adipose precursor cells exhibit in vitro osteogenic potential.
    Dudas JR; Losee JE; Penascino VM; Smith DM; Cooper GM; Mooney MP; Jiang S; Rubin JP; Marra KG
    J Craniofac Surg; 2008 Mar; 19(2):360-8. PubMed ID: 18362712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Study on osteogenic ability of chitosan/beta-tricalcium phosphate scaffold combined with human bone morphogenetic protein].
    Lai RF; Zhao QT; Liu XN; Shen S
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2010 Oct; 28(5):464-7. PubMed ID: 21179674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A; Kamali A
    J Control Release; 2017 May; 254():65-74. PubMed ID: 28363521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repairing critical-sized rat calvarial defects with a periosteal cell-seeded small intestinal submucosal layer.
    Keskin M; Kelly CP; Moreira-Gonzalez A; Lobocki C; Yarim M; Kaplan S; Jackson IT
    Plast Reconstr Surg; 2008 Aug; 122(2):400-409. PubMed ID: 18626355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Experimental study on construction of neurotization tissue engineered bone for repairing large bone defects in rabbit].
    Jiang S; Liu Y; Wang Q; Zhao P; Mu T; Wang L; Qin J; Chen S; Pei G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 May; 24(5):599-605. PubMed ID: 20540269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osteogenic Differentiation Evaluation of an Engineered Extracellular Matrix Based Tissue Sheet for Potential Periosteum Replacement.
    Xing Q; Qian Z; Kannan B; Tahtinen M; Zhao F
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23239-47. PubMed ID: 26419888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The osteogenic study of tissue engineering bone with BMP2 and BMP7 gene-modified rat adipose-derived stem cell.
    Qing W; Guang-Xing C; Lin G; Liu Y
    J Biomed Biotechnol; 2012; 2012():410879. PubMed ID: 22778550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study of bone repair using porous hydroxyapatite/ β-tricalcium phosphate and xenograft scaffold in rabbits with tibia defect.
    Bagher Z; Rajaei F; Shokrgozar M
    Iran Biomed J; 2012; 16(1):18-24. PubMed ID: 22562028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [ESTABLISHMENT OF A NEW RADIUS DEFECT MODEL BASED ON ULNA ANATOMICAL MEASUREMENT IN RABBITS].
    Liu H; Guo Y; Mei W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Feb; 30(2):173-7. PubMed ID: 27276810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effectiveness of tissue engineered based platelet gel embedded chitosan scaffold on experimentally induced critical sized segmental bone defect model in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A
    Injury; 2017 Jul; 48(7):1466-1474. PubMed ID: 28460883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo investigation of tissue-engineered periosteum for the repair of allogeneic critical size bone defects in rabbits.
    Zhao L; Zhao J; Yu J; Sun R; Zhang X; Hu S
    Regen Med; 2017 Apr; 12(4):353-364. PubMed ID: 28621175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Urine-derived stem cells loaded onto a chitosan-optimized biphasic calcium-phosphate scaffold for repairing large segmental bone defects in rabbits.
    Liu G; Sun J; Gong M; Xing F; Wu S; Xiang Z
    J Biomed Mater Res B Appl Biomater; 2021 Dec; 109(12):2014-2029. PubMed ID: 33979024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering.
    Dhivya S; Keshav Narayan A; Logith Kumar R; Viji Chandran S; Vairamani M; Selvamurugan N
    Cell Prolif; 2018 Feb; 51(1):. PubMed ID: 29159895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Repair of the radial defect of rabbit by polyester/tricalcium phosphate scaffolds prepared by rapid prototyping technology].
    Sun L; Hu YY; Xiong Z; Wang WM; Pan Y
    Zhonghua Wai Ke Za Zhi; 2005 Apr; 43(8):535-9. PubMed ID: 15938915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Comparison of effect between vascularization osteogenesis and membrane guided osteogenesis in bone repair by tissue engineered bone with pedicled fascial flap packing autologous red bone marrow].
    Yang X; Zhang L; Meng X; Wang Y; Shi W; Du Y; Hu Z; Yin Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Jun; 25(6):729-35. PubMed ID: 21735789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors of osteogenesis influencing various human stem cells on third-generation gelatin/β-tricalcium phosphate scaffold material.
    Weinand C; Nabili A; Khumar M; Dunn JR; Ramella-Roman J; Jeng JC; Jordan MH; Tabata Y
    Rejuvenation Res; 2011 Apr; 14(2):185-94. PubMed ID: 21235414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.