BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 22439753)

  • 1. Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range.
    Drozdowicz-Tomsia K; Baltar HT; Goldys EM
    Langmuir; 2012 Jun; 28(24):9071-81. PubMed ID: 22439753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput ultrasensitive characterization of chemical, structural and plasmonic properties of EBL-fabricated single silver nanoparticles.
    Huang T; Cao W; Elsayed-Ali HE; Xu XH
    Nanoscale; 2012 Jan; 4(2):380-5. PubMed ID: 22117236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays.
    Henson J; Dimakis E; DiMaria J; Li R; Minissale S; Dal Negro L; Moustakas TD; Paiella R
    Opt Express; 2010 Sep; 18(20):21322-9. PubMed ID: 20941028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mie and Bragg plasmons in subwavelength silver semi-shells.
    Maaroof AI; Cortie MB; Harris N; Wieczorek L
    Small; 2008 Dec; 4(12):2292-9. PubMed ID: 19016499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and optical properties of silver nanoparticles and arrays.
    Evanoff DD; Chumanov G
    Chemphyschem; 2005 Jul; 6(7):1221-31. PubMed ID: 15942971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties.
    Zhang XY; Hu A; Zhang T; Lei W; Xue XJ; Zhou Y; Duley WW
    ACS Nano; 2011 Nov; 5(11):9082-92. PubMed ID: 21955107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly anisotropic effective dielectric functions of silver nanoparticle arrays.
    Oates TW; Ranjan M; Facsko S; Arwin H
    Opt Express; 2011 Jan; 19(3):2014-28. PubMed ID: 21369018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric silver "nanocarrot" structures: solution synthesis and their asymmetric plasmonic resonances.
    Liang H; Rossouw D; Zhao H; Cushing SK; Shi H; Korinek A; Xu H; Rosei F; Wang W; Wu N; Botton GA; Ma D
    J Am Chem Soc; 2013 Jul; 135(26):9616-9. PubMed ID: 23758332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.
    Huang CH; Lin HY; Lau BC; Liu CY; Chui HC; Tzeng Y
    Opt Express; 2010 Dec; 18(26):27891-9. PubMed ID: 21197062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.
    Le F; Brandl DW; Urzhumov YA; Wang H; Kundu J; Halas NJ; Aizpurua J; Nordlander P
    ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances.
    Fischer J; Vogel N; Mohammadi R; Butt HJ; Landfester K; Weiss CK; Kreiter M
    Nanoscale; 2011 Nov; 3(11):4788-97. PubMed ID: 21952954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.
    Choi I; Song HD; Lee S; Yang YI; Kang T; Yi J
    J Am Chem Soc; 2012 Jul; 134(29):12083-90. PubMed ID: 22746373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars.
    Chau YF; Lin YJ; Tsai DP
    Opt Express; 2010 Feb; 18(4):3510-8. PubMed ID: 20389360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide-field single metal nanoparticle spectroscopy for high throughput localized surface plasmon resonance sensing.
    Chen KH; Hobley J; Foo YL; Su X
    Lab Chip; 2011 Jun; 11(11):1895-901. PubMed ID: 21359329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.