These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22439843)

  • 1. Discovery of Plasmodium vivax N-myristoyltransferase inhibitors: screening, synthesis, and structural characterization of their binding mode.
    Goncalves V; Brannigan JA; Whalley D; Ansell KH; Saxty B; Holder AA; Wilkinson AJ; Tate EW; Leatherbarrow RJ
    J Med Chem; 2012 Apr; 55(7):3578-82. PubMed ID: 22439843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of novel and ligand-efficient inhibitors of Plasmodium falciparum and Plasmodium vivax N-myristoyltransferase.
    Rackham MD; Brannigan JA; Moss DK; Yu Z; Wilkinson AJ; Holder AA; Tate EW; Leatherbarrow RJ
    J Med Chem; 2013 Jan; 56(1):371-5. PubMed ID: 23170970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Selective Inhibitors of
    Harupa A; De Las Heras L; Colmenarejo G; Lyons-Abbott S; Reers A; Caballero Hernandez I; Chung CW; Charter D; Myler PJ; Fernández-Menéndez RM; Calderón F; Palomo S; Rodríguez B; Berlanga M; Herreros-Avilés E; Staker BL; Fernández Álvaro E; Kaushansky A
    J Med Chem; 2020 Jan; 63(2):591-600. PubMed ID: 31850752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Subsite Selectivity within
    Rodríguez-Hernández D; Fenwick MK; Zigweid R; Sankaran B; Myler PJ; Sunnerhagen P; Kaushansky A; Staker BL; Grøtli M
    J Med Chem; 2024 May; 67(9):7312-7329. PubMed ID: 38680035
    [No Abstract]   [Full Text] [Related]  

  • 5. Design and synthesis of high affinity inhibitors of Plasmodium falciparum and Plasmodium vivax N-myristoyltransferases directed by ligand efficiency dependent lipophilicity (LELP).
    Rackham MD; Brannigan JA; Rangachari K; Meister S; Wilkinson AJ; Holder AA; Leatherbarrow RJ; Tate EW
    J Med Chem; 2014 Mar; 57(6):2773-88. PubMed ID: 24641010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of inhibitors of Plasmodium falciparum N-myristoyltransferase, a promising target for antimalarial drug discovery.
    Yu Z; Brannigan JA; Moss DK; Brzozowski AM; Wilkinson AJ; Holder AA; Tate EW; Leatherbarrow RJ
    J Med Chem; 2012 Oct; 55(20):8879-90. PubMed ID: 23035716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ternary structure of Plasmodium vivaxN-myristoyltransferase with myristoyl-CoA and inhibitor IMP-0001173.
    Bolling C; Mendez A; Taylor S; Makumire S; Reers A; Zigweid R; Subramanian S; Dranow DM; Staker B; Edwards TE; Tate EW; Bell AS; Myler PJ; Asojo OA; Chakafana G
    Acta Crystallogr F Struct Biol Commun; 2024 Oct; 80(Pt 10):269-277. PubMed ID: 39291304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Small-Molecule Trypanosoma brucei N-Myristoyltransferase Inhibitors: Discovery and Optimisation of a Novel Binding Mode.
    Spinks D; Smith V; Thompson S; Robinson DA; Luksch T; Smith A; Torrie LS; McElroy S; Stojanovski L; Norval S; Collie IT; Hallyburton I; Rao B; Brand S; Brenk R; Frearson JA; Read KD; Wyatt PG; Gilbert IH
    ChemMedChem; 2015 Nov; 10(11):1821-36. PubMed ID: 26395087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology modeling and molecular dynamics simulation of N-myristoyltransferase from Plasmodium falciparum: an insight into novel antimalarial drug design.
    Paul P; Chowdhury A; Das Talukdar A; Choudhury MD
    J Mol Model; 2015 Mar; 21(3):37. PubMed ID: 25663521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based design of potent and selective Leishmania N-myristoyltransferase inhibitors.
    Hutton JA; Goncalves V; Brannigan JA; Paape D; Wright MH; Waugh TM; Roberts SM; Bell AS; Wilkinson AJ; Smith DF; Leatherbarrow RJ; Tate EW
    J Med Chem; 2014 Oct; 57(20):8664-70. PubMed ID: 25238611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptidomimetic inhibitors of N-myristoyltransferase from human malaria and leishmaniasis parasites.
    Olaleye TO; Brannigan JA; Roberts SM; Leatherbarrow RJ; Wilkinson AJ; Tate EW
    Org Biomol Chem; 2014 Nov; 12(41):8132-7. PubMed ID: 25230674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of potent and selective N-myristoyltransferase inhibitors of Plasmodium vivax liver stage hypnozoites and schizonts.
    Rodríguez-Hernández D; Vijayan K; Zigweid R; Fenwick MK; Sankaran B; Roobsoong W; Sattabongkot J; Glennon EKK; Myler PJ; Sunnerhagen P; Staker BL; Kaushansky A; Grøtli M
    Nat Commun; 2023 Sep; 14(1):5408. PubMed ID: 37669940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a novel class of orally active trypanocidal N-myristoyltransferase inhibitors.
    Brand S; Cleghorn LA; McElroy SP; Robinson DA; Smith VC; Hallyburton I; Harrison JR; Norcross NR; Spinks D; Bayliss T; Norval S; Stojanovski L; Torrie LS; Frearson JA; Brenk R; Fairlamb AH; Ferguson MA; Read KD; Wyatt PG; Gilbert IH
    J Med Chem; 2012 Jan; 55(1):140-52. PubMed ID: 22148754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Oxotetrahydroquinoline-based antimalarials with high potency and metabolic stability.
    Bulbule VJ; Rivas K; Verlinde CL; Van Voorhis WC; Gelb MH
    J Med Chem; 2008 Feb; 51(3):384-7. PubMed ID: 18198825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach.
    Wright MH; Clough B; Rackham MD; Rangachari K; Brannigan JA; Grainger M; Moss DK; Bottrill AR; Heal WP; Broncel M; Serwa RA; Brady D; Mann DJ; Leatherbarrow RJ; Tewari R; Wilkinson AJ; Holder AA; Tate EW
    Nat Chem; 2014 Feb; 6(2):112-21. PubMed ID: 24451586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Silico screening on the three-dimensional model of the Plasmodium vivax SUB1 protease leads to the validation of a novel anti-parasite compound.
    Bouillon A; Giganti D; Benedet C; Gorgette O; Pêtres S; Crublet E; Girard-Blanc C; Witkowski B; Ménard D; Nilges M; Mercereau-Puijalon O; Stoven V; Barale JC
    J Biol Chem; 2013 Jun; 288(25):18561-73. PubMed ID: 23653352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homology modeling and molecular dynamics simulation of N-myristoyltransferase from protozoan parasites: active site characterization and insights into rational inhibitor design.
    Sheng C; Ji H; Miao Z; Che X; Yao J; Wang W; Dong G; Guo W; Lü J; Zhang W
    J Comput Aided Mol Des; 2009 Jun; 23(6):375-89. PubMed ID: 19370313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of novel imidazole-substituted dipeptide amides as potent and selective inhibitors of Candida albicans myristoylCoA:protein N-myristoyltransferase and identification of related tripeptide inhibitors with mechanism-based antifungal activity.
    Devadas B; Freeman SK; Zupec ME; Lu HF; Nagarajan SR; Kishore NS; Lodge JK; Kuneman DW; McWherter CA; Vinjamoori DV; Getman DP; Gordon JI; Sikorski JA
    J Med Chem; 1997 Aug; 40(16):2609-25. PubMed ID: 9258368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of N-myristoyltransferase from Aspergillus fumigatus.
    Shimada T; Suzuki M; Katakura S
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):754-61. PubMed ID: 25849386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Plasmodium vivax Hypoxanthine-Guanine Phosphoribosyltransferase Inhibitors as Potential Antimalarial Therapeutics.
    Keough DT; Rejman D; Pohl R; Zborníková E; Hocková D; Croll T; Edstein MD; Birrell GW; Chavchich M; Naesens LMJ; Pierens GK; Brereton IM; Guddat LW
    ACS Chem Biol; 2018 Jan; 13(1):82-90. PubMed ID: 29161011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.