These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 22439970)

  • 1. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction.
    Jahan M; Bao Q; Loh KP
    J Am Chem Soc; 2012 Apr; 134(15):6707-13. PubMed ID: 22439970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-directing role of graphene in the synthesis of metal-organic framework nanowire.
    Jahan M; Bao Q; Yang JX; Loh KP
    J Am Chem Soc; 2010 Oct; 132(41):14487-95. PubMed ID: 20863117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction.
    Wang S; Yu D; Dai L; Chang DW; Baek JB
    ACS Nano; 2011 Aug; 5(8):6202-9. PubMed ID: 21780760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells.
    Liu Q; Zhang J
    Langmuir; 2013 Mar; 29(11):3821-8. PubMed ID: 23425296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction.
    Lin Z; Song MK; Ding Y; Liu Y; Liu M; Wong CP
    Phys Chem Chem Phys; 2012 Mar; 14(10):3381-7. PubMed ID: 22307527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts.
    Li Q; Pan H; Higgins D; Cao R; Zhang G; Lv H; Wu K; Cho J; Wu G
    Small; 2015 Mar; 11(12):1443-52. PubMed ID: 25400088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reduced graphene oxide/covalent cobalt porphyrin framework for efficient oxygen reduction reaction.
    Zuo Q; Cheng G; Luo W
    Dalton Trans; 2017 Jul; 46(29):9344-9348. PubMed ID: 28675228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent composite hydrogels of metal-organic frameworks and functionalized graphene oxide.
    Lee JH; Kang S; Jaworski J; Kwon KY; Seo ML; Lee JY; Jung JH
    Chemistry; 2012 Jan; 18(3):765-9. PubMed ID: 22170565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porphyrin-based graphene oxide frameworks with ultra-large d-spacings for the electrocatalyzation of oxygen reduction reaction.
    Yao B; Li C; Ma J; Shi G
    Phys Chem Chem Phys; 2015 Jul; 17(29):19538-45. PubMed ID: 26145727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts.
    Liang Y; Wang H; Zhou J; Li Y; Wang J; Regier T; Dai H
    J Am Chem Soc; 2012 Feb; 134(7):3517-23. PubMed ID: 22280461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts.
    Banerjee PC; Lobo DE; Middag R; Ng WK; Shaibani ME; Majumder M
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3655-64. PubMed ID: 25612667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior Catalytic Activity of Electrochemically Reduced Graphene Oxide Supported Iron Phthalocyanines toward Oxygen Reduction Reaction.
    Liu D; Long YT
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24063-8. PubMed ID: 26477473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.
    Qu L; Liu Y; Baek JB; Dai L
    ACS Nano; 2010 Mar; 4(3):1321-6. PubMed ID: 20155972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction.
    Zhang C; Hao R; Yin H; Liu F; Hou Y
    Nanoscale; 2012 Dec; 4(23):7326-9. PubMed ID: 23086132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-cobaltite-Pd hybrid materials for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells.
    Sharma CS; Awasthi R; Singh RN; Sinha AS
    Phys Chem Chem Phys; 2013 Dec; 15(46):20333-44. PubMed ID: 24169732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions.
    Liu Q; Jin J; Zhang J
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5002-8. PubMed ID: 23662625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups.
    Li Y; Zhao Y; Cheng H; Hu Y; Shi G; Dai L; Qu L
    J Am Chem Soc; 2012 Jan; 134(1):15-8. PubMed ID: 22136359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen reduction reaction by electrochemically reduced graphene oxide.
    Bikkarolla SK; Cumpson P; Joseph P; Papakonstantinou P
    Faraday Discuss; 2014; 173():415-28. PubMed ID: 25467392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-N Decorated Hierarchically Porous Graphene Aerogel for Efficient Oxygen Reduction Reaction in Acid.
    Fu X; Choi JY; Zamani P; Jiang G; Hoque MA; Hassan FM; Chen Z
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6488-95. PubMed ID: 26937737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.