These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 22439982)
1. On summary measure analysis of linear trend repeated measures data: performance comparison with two competing methods. Vossoughi M; Ayatollahi SM; Towhidi M; Ketabchi F BMC Med Res Methodol; 2012 Mar; 12():33. PubMed ID: 22439982 [TBL] [Abstract][Full Text] [Related]
2. Using the linear mixed model to analyze nonnormal data distributions in longitudinal designs. Arnau J; Bono R; Blanca MJ; Bendayan R Behav Res Methods; 2012 Dec; 44(4):1224-38. PubMed ID: 22399245 [TBL] [Abstract][Full Text] [Related]
3. Establishing normative data for repeated cognitive assessment: a comparison of different statistical methods. Van der Elst W; Molenberghs G; Van Boxtel MP; Jolles J Behav Res Methods; 2013 Dec; 45(4):1073-86. PubMed ID: 23344738 [TBL] [Abstract][Full Text] [Related]
4. On summary measures analysis of the linear mixed effects model for repeated measures when data are not missing completely at random. Little RJ; Raghunathan T Stat Med; 1999 Sep 15-30; 18(17-18):2465-78. PubMed ID: 10474153 [TBL] [Abstract][Full Text] [Related]
5. Comparing a single case to a control group - Applying linear mixed effects models to repeated measures data. Huber S; Klein E; Moeller K; Willmes K Cortex; 2015 Oct; 71():148-59. PubMed ID: 26218619 [TBL] [Abstract][Full Text] [Related]
6. Analysis of single-case experimental count data using the linear mixed effects model: A simulation study. Declercq L; Jamshidi L; Fernández-Castilla B; Beretvas SN; Moeyaert M; Ferron JM; Van den Noortgate W Behav Res Methods; 2019 Dec; 51(6):2477-2497. PubMed ID: 30105444 [TBL] [Abstract][Full Text] [Related]
7. Effects of covariance model assumptions on hypothesis tests for repeated measurements: analysis of ovarian hormone data and pituitary-pteryomaxillary distance data. Park T; Park JK; Davis CS Stat Med; 2001 Aug; 20(16):2441-53. PubMed ID: 11512134 [TBL] [Abstract][Full Text] [Related]
8. Effect of heteroscedasticity between treatment groups on mixed-effects models for repeated measures. Gosho M; Maruo K Pharm Stat; 2018 Sep; 17(5):578-592. PubMed ID: 29978944 [TBL] [Abstract][Full Text] [Related]
9. A comparison of statistical approaches used to evaluate change in cognitive function following pharmacologic challenge: an example with lorazepam. Pietrzak RH; Fredrickson A; Snyder PJ; Maruff P Hum Psychopharmacol; 2010; 25(4):335-41. PubMed ID: 20521324 [TBL] [Abstract][Full Text] [Related]
10. Assessing meta-regression methods for examining moderator relationships with dependent effect sizes: A Monte Carlo simulation. López-López JA; Van den Noortgate W; Tanner-Smith EE; Wilson SJ; Lipsey MW Res Synth Methods; 2017 Dec; 8(4):435-450. PubMed ID: 28556477 [TBL] [Abstract][Full Text] [Related]
11. Power comparison of summary measure, mixed model, and survival analysis methods for analysis of repeated-measures trials. Zucker DM; Manor O; Gubman Y J Biopharm Stat; 2012; 22(3):519-34. PubMed ID: 22416838 [TBL] [Abstract][Full Text] [Related]
12. Scale mixture of skew-normal linear mixed models with within-subject serial dependence. Schumacher FL; Lachos VH; Matos LA Stat Med; 2021 Mar; 40(7):1790-1810. PubMed ID: 33438305 [TBL] [Abstract][Full Text] [Related]
13. Linear mixed-effects modeling approach to FMRI group analysis. Chen G; Saad ZS; Britton JC; Pine DS; Cox RW Neuroimage; 2013 Jun; 73():176-90. PubMed ID: 23376789 [TBL] [Abstract][Full Text] [Related]
14. Robust tests for multivariate factorial designs under heteroscedasticity. Vallejo G; Ato M Behav Res Methods; 2012 Jun; 44(2):471-89. PubMed ID: 21994181 [TBL] [Abstract][Full Text] [Related]
15. A review of statistical estimators for risk-adjusted length of stay: analysis of the Australian and new Zealand Intensive Care Adult Patient Data-Base, 2008-2009. Moran JL; Solomon PJ; BMC Med Res Methodol; 2012 May; 12():68. PubMed ID: 22591115 [TBL] [Abstract][Full Text] [Related]
16. Applying univariate vs. multivariate statistics to investigate therapeutic efficacy in (pre)clinical trials: A Monte Carlo simulation study on the example of a controlled preclinical neurotrauma trial. Todorov H; Searle-White E; Gerber S PLoS One; 2020; 15(3):e0230798. PubMed ID: 32214370 [TBL] [Abstract][Full Text] [Related]
17. Inference for marginal linear models for clustered longitudinal data with potentially informative cluster sizes. Wang M; Kong M; Datta S Stat Methods Med Res; 2011 Aug; 20(4):347-67. PubMed ID: 20223781 [TBL] [Abstract][Full Text] [Related]
18. On the impact of parametric assumptions and robust alternatives for longitudinal data analysis. Lu N; Tang W; He H; Yu Q; Crits-Christoph P; Zhang H; Tu X Biom J; 2009 Aug; 51(4):627-43. PubMed ID: 19688758 [TBL] [Abstract][Full Text] [Related]
19. The analysis of very small samples of repeated measurements I: an adjusted sandwich estimator. Skene SS; Kenward MG Stat Med; 2010 Nov; 29(27):2825-37. PubMed ID: 20839367 [TBL] [Abstract][Full Text] [Related]
20. A comparison of multiple imputation methods for missing data in longitudinal studies. Huque MH; Carlin JB; Simpson JA; Lee KJ BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]