These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22439984)

  • 1. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires.
    Yang H; Huang S; Huang X; Fan F; Liang W; Liu XH; Chen LQ; Huang JY; Li J; Zhu T; Zhang S
    Nano Lett; 2012 Apr; 12(4):1953-8. PubMed ID: 22439984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic swelling and fracture of silicon nanowires during lithiation.
    Liu XH; Zheng H; Zhong L; Huang S; Karki K; Zhang LQ; Liu Y; Kushima A; Liang WT; Wang JW; Cho JH; Epstein E; Dayeh SA; Picraux ST; Zhu T; Li J; Sullivan JP; Cumings J; Wang C; Mao SX; Ye ZZ; Zhang S; Huang JY
    Nano Lett; 2011 Aug; 11(8):3312-8. PubMed ID: 21707052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries.
    Pharr M; Zhao K; Wang X; Suo Z; Vlassak JJ
    Nano Lett; 2012 Sep; 12(9):5039-47. PubMed ID: 22889293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface coating mediated swelling and fracture of silicon nanowires during lithiation.
    Sandu G; Brassart L; Gohy JF; Pardoen T; Melinte S; Vlad A
    ACS Nano; 2014 Sep; 8(9):9427-36. PubMed ID: 25133525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design.
    An Y; Wood BC; Ye J; Chiang YM; Wang YM; Tang M; Jiang H
    Phys Chem Chem Phys; 2015 Jul; 17(27):17718-28. PubMed ID: 26082019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale.
    Jung SC; Choi JW; Han YK
    Nano Lett; 2012 Oct; 12(10):5342-7. PubMed ID: 22984966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Fold Anisotropy Governs Morphological Evolution and Stress Generation in Sodiated Black Phosphorus for Sodium Ion Batteries.
    Chen T; Zhao P; Guo X; Zhang S
    Nano Lett; 2017 Apr; 17(4):2299-2306. PubMed ID: 28181809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion.
    Lee SW; McDowell MT; Berla LA; Nix WD; Cui Y
    Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4080-5. PubMed ID: 22371565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-Dependent Fracture Resistance of Silicon Nanopillars during Electrochemical Lithiation.
    Kim Y; Yeom SJ; Yoo J; Yun J; Lee HW; Lee SW
    Nano Lett; 2022 Aug; 22(16):6631-6636. PubMed ID: 35950996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-limiting lithiation in silicon nanowires.
    Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T
    ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithiation-induced fracture of silicon nanowires observed by in-situ scanning electron microscopy.
    Wei CY; Sun YT; Liu YL; Liu TR; Wen CY
    Nanotechnology; 2020 Sep; 31(36):364001. PubMed ID: 32438349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Coating Constraint Induced Anisotropic Swelling of Silicon in Si-Void@SiO
    Liu Q; Cui Z; Zou R; Zhang J; Xu K; Hu J
    Small; 2017 Apr; 13(13):. PubMed ID: 28121377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating.
    Wang J; Luo H; Liu Y; He Y; Fan F; Zhang Z; Mao SX; Wang C; Zhu T
    Nano Lett; 2016 Sep; 16(9):5815-22. PubMed ID: 27536960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological evolution of Si nanowires upon lithiation: a first-principles multiscale model.
    Cubuk ED; Wang WL; Zhao K; Vlassak JJ; Suo Z; Kaxiras E
    Nano Lett; 2013 May; 13(5):2011-5. PubMed ID: 23541144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.
    Luo L; Yang H; Yan P; Travis JJ; Lee Y; Liu N; Piper DM; Lee SH; Zhao P; George SM; Zhang JG; Cui Y; Zhang S; Ban C; Wang CM
    ACS Nano; 2015 May; 9(5):5559-66. PubMed ID: 25893684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale.
    Liu Y; Liu XH; Nguyen BM; Yoo J; Sullivan JP; Picraux ST; Huang JY; Dayeh SA
    Nano Lett; 2013 Oct; 13(10):4876-83. PubMed ID: 24000810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries.
    Cui LF; Yang Y; Hsu CM; Cui Y
    Nano Lett; 2009 Sep; 9(9):3370-4. PubMed ID: 19655765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.
    Cui LF; Ruffo R; Chan CK; Peng H; Cui Y
    Nano Lett; 2009 Jan; 9(1):491-5. PubMed ID: 19105648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.