These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22440016)

  • 1. Carbohydrates inhibit salivary proteins precipitation by condensed tannins.
    Soares S; Mateus N; de Freitas V
    J Agric Food Chem; 2012 Apr; 60(15):3966-72. PubMed ID: 22440016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of human salivary proteins families toward food polyphenols.
    Soares S; Vitorino R; Osório H; Fernandes A; Venâncio A; Mateus N; Amado F; de Freitas V
    J Agric Food Chem; 2011 May; 59(10):5535-47. PubMed ID: 21417408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the glycosylation of human salivary proline-rich proteins on their interactions with condensed tannins.
    Sarni-Manchado P; Canals-Bosch JM; Mazerolles G; Cheynier V
    J Agric Food Chem; 2008 Oct; 56(20):9563-9. PubMed ID: 18808139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of pectic polysaccharides from grape skins on salivary protein - procyanidin interactions.
    Brandão E; Fernandes A; Guerreiro C; Coimbra MA; Mateus N; de Freitas V; Soares S
    Carbohydr Polym; 2020 May; 236():116044. PubMed ID: 32172858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins.
    Carvalho E; Mateus N; Plet B; Pianet I; Dufourc E; De Freitas V
    J Agric Food Chem; 2006 Nov; 54(23):8936-44. PubMed ID: 17090144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.
    Sun B; de Sá M; Leandro C; Caldeira I; Duarte FL; Spranger I
    J Agric Food Chem; 2013 Jan; 61(4):939-46. PubMed ID: 23294371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the mechanism of natural polysaccharides on the deastringent effect of Triphala extract.
    Liu J; Wang P; Huang H; Xie X; Lin J; Zheng Y; Han L; Han X; Zhang D
    Food Chem; 2024 May; 441():138340. PubMed ID: 38176146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of grape seed tannins with salivary proteins.
    Sarni-Manchado P; Cheynier V; Moutounet M
    J Agric Food Chem; 1999 Jan; 47(1):42-7. PubMed ID: 10563846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.
    Obreque-Slíer E; Peña-Neira A; López-Solís R
    J Agric Food Chem; 2010 Mar; 58(6):3729-35. PubMed ID: 20158256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition Mechanisms of Wine Polysaccharides on Salivary Protein Precipitation.
    Brandão E; Silva MS; García-Estévez I; Williams P; Mateus N; Doco T; de Freitas V; Soares S
    J Agric Food Chem; 2020 Mar; 68(10):2955-2963. PubMed ID: 31690078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.
    Cala O; Pinaud N; Simon C; Fouquet E; Laguerre M; Dufourc EJ; Pianet I
    FASEB J; 2010 Nov; 24(11):4281-90. PubMed ID: 20605948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding.
    Cala O; Dufourc EJ; Fouquet E; Manigand C; Laguerre M; Pianet I
    Langmuir; 2012 Dec; 28(50):17410-8. PubMed ID: 23173977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Interaction Between Salivary Proteins and Food Tannins.
    Silva MS; García-Estévez I; Brandão E; Mateus N; de Freitas V; Soares S
    J Agric Food Chem; 2017 Aug; 65(31):6415-6424. PubMed ID: 28589723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Chemical Species on Polyphenol-Protein Interactions Related to Wine Astringency.
    Ramos-Pineda AM; Carpenter GH; García-Estévez I; Escribano-Bailón MT
    J Agric Food Chem; 2020 Mar; 68(10):2948-2954. PubMed ID: 30854856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New procyanidin B3-human salivary protein complexes by mass spectrometry. Effect of salivary protein profile, tannin concentration, and time stability.
    Perez-Gregorio MR; Mateus N; De Freitas V
    J Agric Food Chem; 2014 Oct; 62(41):10038-45. PubMed ID: 25248720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between condensed tannin structures and their ability to precipitate feed proteins in the rumen.
    Lorenz MM; Alkhafadji L; Stringano E; Nilsson S; Mueller-Harvey I; Udén P
    J Sci Food Agric; 2014 Mar; 94(5):963-8. PubMed ID: 23934572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between highly galloylated persimmon tannins and pectins.
    Mamet T; Ge ZZ; Zhang Y; Li CM
    Int J Biol Macromol; 2018 Jan; 106():410-417. PubMed ID: 28797812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach.
    Brandão E; Silva MS; García-Estévez I; Williams P; Mateus N; Doco T; de Freitas V; Soares S
    Carbohydr Polym; 2017 Dec; 177():77-85. PubMed ID: 28962798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency.
    Ma W; Waffo-Teguo P; Jourdes M; Li H; Teissedre PL
    PLoS One; 2016; 11(8):e0161095. PubMed ID: 27518822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of tea tannins and condensed tannins with proteins.
    Frazier RA; Deaville ER; Green RJ; Stringano E; Willoughby I; Plant J; Mueller-Harvey I
    J Pharm Biomed Anal; 2010 Jan; 51(2):490-5. PubMed ID: 19553056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.