These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 22440342)
1. Effect of chestnut and quebracho tannins on fatty acid profile in rumen liquid- and solid-associated bacteria: an in vitro study. Buccioni A; Minieri S; Rapaccini S; Antongiovanni M; Mele M Animal; 2011 Aug; 5(10):1521-30. PubMed ID: 22440342 [TBL] [Abstract][Full Text] [Related]
2. Effect of Dietary Chestnut or Quebracho Tannin Supplementation on Microbial Community and Fatty Acid Profile in the Rumen of Dairy Ewes. Buccioni A; Pallara G; Pastorelli R; Bellini L; Cappucci A; Mannelli F; Minieri S; Roscini V; Rapaccini S; Mele M; Giovannetti L; Viti C; Pauselli M Biomed Res Int; 2017; 2017():4969076. PubMed ID: 29457028 [TBL] [Abstract][Full Text] [Related]
3. Relationship among trans and conjugated fatty acids and bovine milk fat yield due to dietary concentrate and linseed oil. Loor JJ; Ferlay A; Ollier A; Doreau M; Chilliard Y J Dairy Sci; 2005 Feb; 88(2):726-40. PubMed ID: 15653539 [TBL] [Abstract][Full Text] [Related]
4. Effect of silage type and concentrate level on conjugated linoleic acids, trans-C18:1 isomers and fat content in milk from dairy cows. Nielsen TS; Straarup EM; Vestergaard M; Sejrsen K Reprod Nutr Dev; 2006; 46(6):699-712. PubMed ID: 17169316 [TBL] [Abstract][Full Text] [Related]
5. Role of the protozoan Isotricha prostoma, liquid-, and solid-associated bacteria in rumen biohydrogenation of linoleic acid. Boeckaert C; Morgavi DP; Jouany JP; Maignien L; Boon N; Fievez V Animal; 2009 Jul; 3(7):961-71. PubMed ID: 22444816 [TBL] [Abstract][Full Text] [Related]
6. Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins. Khiaosa-Ard R; Bryner SF; Scheeder MR; Wettstein HR; Leiber F; Kreuzer M; Soliva CR J Dairy Sci; 2009 Jan; 92(1):177-88. PubMed ID: 19109277 [TBL] [Abstract][Full Text] [Related]
7. Effect of forage:concentrate ratio on fatty acid composition of rumen bacteria isolated from ruminal and duodenal digesta. Vlaeminck B; Fievez V; Demeyer D; Dewhurst RJ J Dairy Sci; 2006 Jul; 89(7):2668-78. PubMed ID: 16772586 [TBL] [Abstract][Full Text] [Related]
8. Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage:concentrate ratio and linseed oil in dairy cows. Loor JJ; Ueda K; Ferlay A; Chilliard Y; Doreau M J Dairy Sci; 2004 Aug; 87(8):2472-85. PubMed ID: 15328271 [TBL] [Abstract][Full Text] [Related]
9. Changes in fatty acid composition of various full fat crushed oilseeds and their free oils when incubated with rumen liquor in vitro. Hoffmann A; Steingass H; Schollenberger M; Jara HT; Hartung K; Weiss E; Mosenthin R Arch Anim Nutr; 2013 Feb; 67(1):77-92. PubMed ID: 23301837 [TBL] [Abstract][Full Text] [Related]
10. Metabolic fate of fatty acids involved in ruminal biohydrogenation in sheep fed concentrate or herbage with or without tannins. Vasta V; Mele M; Serra A; Scerra M; Luciano G; Lanza M; Priolo A J Anim Sci; 2009 Aug; 87(8):2674-84. PubMed ID: 19395521 [TBL] [Abstract][Full Text] [Related]
11. Effects of chemically or technologically treated linseed products and docosahexaenoic acid addition to linseed oil on biohydrogenation of C18:3n-3 in vitro. Sterk A; Hovenier R; Vlaeminck B; van Vuuren AM; Hendriks WH; Dijkstra J J Dairy Sci; 2010 Nov; 93(11):5286-99. PubMed ID: 20965345 [TBL] [Abstract][Full Text] [Related]
12. Effects of dietary n-6:n-3 fatty acid ratio on feed intake, digestibility, and fatty acid profiles of the ruminal contents, liver, and muscle of growing lambs. Kim SC; Adesogan AT; Badinga L; Staples CR J Anim Sci; 2007 Mar; 85(3):706-16. PubMed ID: 17121972 [TBL] [Abstract][Full Text] [Related]
13. Composition of bacteria harvested from the liquid and solid fractions of the rumen of sheep as influenced by feed intake. Rodríguez CA; González J; Alvir MR; Repetto JL; Centeno C; Lamrani F Br J Nutr; 2000 Sep; 84(3):369-76. PubMed ID: 10967616 [TBL] [Abstract][Full Text] [Related]
14. Effects of a molasses-coated cottonseed product on diet digestibility, performance, and milk fatty acid profile of lactating dairy cattle. Mullins CR; Bradford BJ J Dairy Sci; 2010 Jul; 93(7):3128-35. PubMed ID: 20630230 [TBL] [Abstract][Full Text] [Related]
15. Milk production, conjugated linoleic acid content, and in vitro ruminal fermentation in response to high levels of soybean oil in dairy ewe diet. Gómez-Cortés P; Frutos P; Mantecón AR; Juárez M; de la Fuente MA; Hervás G J Dairy Sci; 2008 Apr; 91(4):1560-9. PubMed ID: 18349249 [TBL] [Abstract][Full Text] [Related]
16. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. Fuentes MC; Calsamiglia S; Cardozo PW; Vlaeminck B J Dairy Sci; 2009 Sep; 92(9):4456-66. PubMed ID: 19700707 [TBL] [Abstract][Full Text] [Related]
17. Monensin by fat interactions on trans fatty acids in cultures of mixed ruminal microorganisms grown in continuous fermentors fed corn or barley. Jenkins TC; Fellner V; McGuffey RK J Dairy Sci; 2003 Jan; 86(1):324-30. PubMed ID: 12613874 [TBL] [Abstract][Full Text] [Related]
18. Effects of feed-supplementation and hide-spray application of two sources of tannins on enteric and hide bacteria of feedlot cattle. Gutierrez-Banuelos H; Pinchak WE; Min BR; Carstens GE; Anderson RC; Tedeschi LO; Krueger WK; Krueger NA; Lancaster PA; Gomez RR J Environ Sci Health B; 2011; 46(4):360-5. PubMed ID: 21547824 [TBL] [Abstract][Full Text] [Related]
19. Effect of induction of subacute ruminal acidosis on milk fat profile and rumen parameters. Colman E; Fokkink WB; Craninx M; Newbold JR; De Baets B; Fievez V J Dairy Sci; 2010 Oct; 93(10):4759-73. PubMed ID: 20855010 [TBL] [Abstract][Full Text] [Related]
20. Makmur M; Zain M; Agustin F; Sriagtula R; Putri EM Vet World; 2019 Apr; 13(4):661-668. PubMed ID: 32546909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]