These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22441245)

  • 21. Platinum-nanoparticle-modified TiO2 nanowires with enhanced photocatalytic property.
    Wang C; Yin L; Zhang L; Liu N; Lun N; Qi Y
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3373-7. PubMed ID: 20961128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. WO3 modified titanate network film: highly efficient photo-mineralization of 2-propanol under visible light irradiation.
    Li Q; Kako T; Ye J
    Chem Commun (Camb); 2010 Aug; 46(29):5352-4. PubMed ID: 20559586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis.
    Xi G; Yue B; Cao J; Ye J
    Chemistry; 2011 Apr; 17(18):5145-54. PubMed ID: 21432916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasma surface modified TiO2 nanoparticles: improved photocatalytic oxidation of gaseous m-xylene.
    Sumitsawan S; Cho J; Sattler ML; Timmons RB
    Environ Sci Technol; 2011 Aug; 45(16):6970-7. PubMed ID: 21761865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved photocatalytic activity of WO3 through clustered Fe2O3 for organic degradation in the presence of H2O2.
    Bi D; Xu Y
    Langmuir; 2011 Aug; 27(15):9359-66. PubMed ID: 21699256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of one-dimensional TiO2/V2O5 branched heterostructures and their visible light photocatalytic activity towards Rhodamine B.
    Wang Y; Su YR; Qiao L; Liu LX; Su Q; Zhu CQ; Liu XQ
    Nanotechnology; 2011 Jun; 22(22):225702. PubMed ID: 21454938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel Bi(2)WO(6)-TiO(2) heterostructures for Rhodamine B degradation under sunlike irradiation.
    Murcia López S; Hidalgo MC; Navío JA; Colón G
    J Hazard Mater; 2011 Jan; 185(2-3):1425-34. PubMed ID: 21074938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Montmorillonite-supported Ag/TiO(2) nanoparticles: an efficient visible-light bacteria photodegradation material.
    Wu TS; Wang KX; Li GD; Sun SY; Sun J; Chen JS
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):544-50. PubMed ID: 20356203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. UV-switchable polyoxometalate sandwiched between TiO2 and metal nanoparticles for enhanced visible and solar light photococatalysis.
    Pearson A; Bhargava SK; Bansal V
    Langmuir; 2011 Aug; 27(15):9245-52. PubMed ID: 21711019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites.
    Ismail AA; Robben L; Bahnemann DW
    Chemphyschem; 2011 Apr; 12(5):982-91. PubMed ID: 21381175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid Cu(x)O/TiO₂ nanocomposites as risk-reduction materials in indoor environments.
    Qiu X; Miyauchi M; Sunada K; Minoshima M; Liu M; Lu Y; Li D; Shimodaira Y; Hosogi Y; Kuroda Y; Hashimoto K
    ACS Nano; 2012 Feb; 6(2):1609-18. PubMed ID: 22208891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic enhanced photocatalytic and photothermal activity of Au@TiO2 nanopellets against human epithelial carcinoma cells.
    Abdulla-Al-Mamun M; Kusumoto Y; Zannat T; Islam MS
    Phys Chem Chem Phys; 2011 Dec; 13(47):21026-34. PubMed ID: 22011673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts.
    Peng L; Xie T; Lu Y; Fan H; Wang D
    Phys Chem Chem Phys; 2010 Jul; 12(28):8033-41. PubMed ID: 20523943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation.
    Tsukamoto D; Shiraishi Y; Sugano Y; Ichikawa S; Tanaka S; Hirai T
    J Am Chem Soc; 2012 Apr; 134(14):6309-15. PubMed ID: 22440019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constructing WO3/TiO2 composite structure towards sufficient use of solar energy.
    Su D; Wang J; Tang Y; Liu C; Liu L; Han X
    Chem Commun (Camb); 2011 Apr; 47(14):4231-3. PubMed ID: 21359291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A three-way synergy of triple-modified Bi2WO6/Ag/N-TiO2 nanojunction film for enhanced photogenerated charges utilization.
    Xu QC; Ng YH; Zhang Y; Loo JS; Amal R; Tan TT
    Chem Commun (Camb); 2011 Aug; 47(30):8641-3. PubMed ID: 21725528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocatalytic oxidation of monuron in the suspension of WO3 under the irradiation of UV-visible light.
    Chu W; Rao YF
    Chemosphere; 2012 Mar; 86(11):1079-86. PubMed ID: 22205047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic and mechanistic investigations of multielectron transfer reactions induced by stored electrons in TiO2 nanoparticles: a stopped flow study.
    Mohamed HH; Mendive CB; Dillert R; Bahnemann DW
    J Phys Chem A; 2011 Mar; 115(11):2139-47. PubMed ID: 21366310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fe-ions modified mesoporous Bi2WO6 nanosheets with high visible light photocatalytic activity.
    Guo S; Li X; Wang H; Dong F; Wu Z
    J Colloid Interface Sci; 2012 Mar; 369(1):373-80. PubMed ID: 22204968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity.
    Puddu V; Mokaya R; Li Puma G
    Chem Commun (Camb); 2007 Dec; (45):4749-51. PubMed ID: 18004429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.