BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 22441329)

  • 1. Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps.
    Griffith MJ; Sunahara K; Wagner P; Wagner K; Wallace GG; Officer DL; Furube A; Katoh R; Mori S; Mozer AJ
    Chem Commun (Camb); 2012 May; 48(35):4145-62. PubMed ID: 22441329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: the key role of charge recombination for solar cell performance.
    Imahori H; Kang S; Hayashi H; Haruta M; Kurata H; Isoda S; Canton SE; Infahsaeng Y; Kathiravan A; Pascher T; Chábera P; Yartsev AP; Sundström V
    J Phys Chem A; 2011 Apr; 115(16):3679-90. PubMed ID: 20961148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour.
    Barnes PR; Anderson AY; Durrant JR; O'Regan BC
    Phys Chem Chem Phys; 2011 Apr; 13(13):5798-816. PubMed ID: 21327204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells.
    Clifford JN; Martínez-Ferrero E; Viterisi A; Palomares E
    Chem Soc Rev; 2011 Mar; 40(3):1635-46. PubMed ID: 21076736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of dye structure on charge recombination in dye-sensitized solar cells.
    Jennings JR; Liu Y; Wang Q; Zakeeruddin SM; Grätzel M
    Phys Chem Chem Phys; 2011 Apr; 13(14):6637-48. PubMed ID: 21380426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkyl chain barriers for kinetic optimization in dye-sensitized solar cells.
    Kroeze JE; Hirata N; Koops S; Nazeeruddin MK; Schmidt-Mende L; Grätzel M; Durrant JR
    J Am Chem Soc; 2006 Dec; 128(50):16376-83. PubMed ID: 17165794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration.
    Sun Z; Liang M; Chen J
    Acc Chem Res; 2015 Jun; 48(6):1541-50. PubMed ID: 26001106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distance and driving force dependencies of electron injection and recombination dynamics in organic dye-sensitized solar cells.
    Wiberg J; Marinado T; Hagberg DP; Sun L; Hagfeldt A; Albinsson B
    J Phys Chem B; 2010 Nov; 114(45):14358-63. PubMed ID: 20380364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nonconjugated bridge in dimer-sensitized solar cells retards charge recombination without decreasing charge injection efficiency.
    Sunahara K; Griffith MJ; Uchiyama T; Wagner P; Officer DL; Wallace GG; Mozer AJ; Mori S
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10824-9. PubMed ID: 24188005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films.
    Green AN; Palomares E; Haque SA; Kroon JM; Durrant JR
    J Phys Chem B; 2005 Jun; 109(25):12525-33. PubMed ID: 16852549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy.
    Haque SA; Palomares E; Cho BM; Green AN; Hirata N; Klug DR; Durrant JR
    J Am Chem Soc; 2005 Mar; 127(10):3456-62. PubMed ID: 15755165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the efficiency of electron transfer through porphyrin-based molecular wires.
    Winters MU; Dahlstedt E; Blades HE; Wilson CJ; Frampton MJ; Anderson HL; Albinsson B
    J Am Chem Soc; 2007 Apr; 129(14):4291-7. PubMed ID: 17362004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dye sensitization of single crystal semiconductor electrodes.
    Spitler MT; Parkinson BA
    Acc Chem Res; 2009 Dec; 42(12):2017-29. PubMed ID: 19924998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.
    Marinado T; Hagberg DP; Hedlund M; Edvinsson T; Johansson EM; Boschloo G; Rensmo H; Brinck T; Sun L; Hagfeldt A
    Phys Chem Chem Phys; 2009 Jan; 11(1):133-41. PubMed ID: 19081916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.