These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22441632)

  • 21. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional magnetic focusing of superparamagnetic beads for on-chip agglutination assays.
    Afshar R; Moser Y; Lehnert T; Gijs MA
    Anal Chem; 2011 Feb; 83(3):1022-9. PubMed ID: 21214193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer.
    Barat D; Spencer D; Benazzi G; Mowlem MC; Morgan H
    Lab Chip; 2012 Jan; 12(1):118-26. PubMed ID: 22051732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly sensitive fluorescence detection system for microfluidic lab-on-a-chip.
    Ryu G; Huang J; Hofmann O; Walshe CA; Sze JY; McClean GD; Mosley A; Rattle SJ; deMello JC; deMello AJ; Bradley DD
    Lab Chip; 2011 May; 11(9):1664-70. PubMed ID: 21431240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator.
    Smistrup K; Kjeldsen BG; Reimers JL; Dufva M; Petersen J; Hansen MF
    Lab Chip; 2005 Nov; 5(11):1315-9. PubMed ID: 16234958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Technique for real-time measurements of endothelial permeability in a microfluidic membrane chip using laser-induced fluorescence detection.
    Young EW; Watson MW; Srigunapalan S; Wheeler AR; Simmons CA
    Anal Chem; 2010 Feb; 82(3):808-16. PubMed ID: 20050596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Telomerase catalyzed fluorescent probes for sensitive protein profiling based on one-dimensional microfluidic beads array.
    Wen J; Yang X; Wang K; Tan W; Zuo X; Zhang H
    Biosens Bioelectron; 2008 Jul; 23(12):1788-92. PubMed ID: 18387290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous sample washing and concentration using a "trapping-and-releasing" mechanism of magnetic beads on a microfluidic chip.
    Ramadan Q; Gijs MA
    Analyst; 2011 Mar; 136(6):1157-66. PubMed ID: 21270982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical microflow cytometer based on external total reflection.
    Fu LM; Wang YN
    Electrophoresis; 2012 Nov; 33(21):3229-35. PubMed ID: 22949332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip.
    Shin KS; Lee SW; Han KC; Kim SK; Yang EK; Park JH; Ju BK; Kang JY; Kim TS
    Biosens Bioelectron; 2007 Apr; 22(9-10):2261-7. PubMed ID: 17169549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels.
    Zhang H; Xu T; Li CW; Yang M
    Biosens Bioelectron; 2010 Jul; 25(11):2402-7. PubMed ID: 20483585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disposable polydimethylsiloxane/silicon hybrid chips for protein detection.
    Li S; Floriano PN; Christodoulides N; Fozdar DY; Shao D; Ali MF; Dharshan P; Mohanty S; Neikirk D; McDevitt JT; Chen S
    Biosens Bioelectron; 2005 Oct; 21(4):574-80. PubMed ID: 16202870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scattering detection using a photonic-microfluidic integrated device with on-chip collection capabilities.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Electrophoresis; 2014 Feb; 35(2-3):271-81. PubMed ID: 23893703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection.
    Holmes D; Morgan H; Green NG
    Biosens Bioelectron; 2006 Feb; 21(8):1621-30. PubMed ID: 16332434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microchip frontal affinity chromatography to study the binding of a ligand to teicoplanin-derivatized microbeads.
    Liu X; Gomez FA
    Electrophoresis; 2009 Apr; 30(7):1194-7. PubMed ID: 19283695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of nitrated benzodiazepines by indirect laser-induced fluorescence detection on a microfluidic device.
    Bishop SC; Lerch M; McCord BR
    J Chromatogr A; 2007 Jun; 1154(1-2):481-4. PubMed ID: 17499754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip.
    Boer G; Johann R; Rohner J; Merenda F; Delacrétaz G; Renaud P; Salathé RP
    Rev Sci Instrum; 2007 Nov; 78(11):116101. PubMed ID: 18052509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent-divergent microchannels.
    Chen CL; Yang RJ
    Electrophoresis; 2012 Mar; 33(5):751-7. PubMed ID: 22522531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical tweezers directed one-bead one-sequence synthesis of oligonucleotides.
    Wang T; Oehrlein S; Somoza MM; Perez JR; Kershner R; Cerrina F
    Lab Chip; 2011 May; 11(9):1629-37. PubMed ID: 21445444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.