These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 22441755)

  • 1. Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes.
    Wei W; Lee K; Shaw S; Schmuki P
    Chem Commun (Camb); 2012 May; 48(35):4244-6. PubMed ID: 22441755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and growth mechanism of multilayer TiO2 nanotube arrays.
    Guan D; Wang Y
    Nanoscale; 2012 Apr; 4(9):2968-77. PubMed ID: 22460605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rapid growth of 3 microm long titania nanotubes by anodization of titanium in a neutral electrochemical bath.
    Lockman Z; Ismail S; Sreekantan S; Schmidt-Mende L; Macmanus-Driscoll JL
    Nanotechnology; 2010 Feb; 21(5):055601. PubMed ID: 20023309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.
    Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA
    J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays.
    Shin Y; Lee S
    Nanotechnology; 2009 Mar; 20(10):105301. PubMed ID: 19417516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoreduction of Cr(VI) in wastewater by anodic nanoporous Nb
    Alias N; Hussain Z; Tan WK; Kawamura G; Muto H; Matsuda A; Lockman Z
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):60600-60615. PubMed ID: 35426025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H
    Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions.
    Macak JM; Tsuchiya H; Taveira L; Ghicov A; Schmuki P
    J Biomed Mater Res A; 2005 Dec; 75(4):928-33. PubMed ID: 16138327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordered "superlattice" TiO2/Nb2O5 nanotube arrays with improved ion insertion stability.
    Yang M; Yang G; Spiecker E; Lee K; Schmuki P
    Chem Commun (Camb); 2013 Jan; 49(5):460-2. PubMed ID: 23192223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.
    Allam NK; Alamgir F; El-Sayed MA
    ACS Nano; 2010 Oct; 4(10):5819-26. PubMed ID: 20815374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly self-ordered nanochannel TiO2 structures by anodization in a hot glycerol electrolyte.
    Lee K; Kim D; Schmuki P
    Chem Commun (Camb); 2011 May; 47(20):5789-91. PubMed ID: 21494725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aligned MoOx /MoS2 Core-Shell Nanotubular Structures with a High Density of Reactive Sites Based on Self-Ordered Anodic Molybdenum Oxide Nanotubes.
    Jin B; Zhou X; Huang L; Licklederer M; Yang M; Schmuki P
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12252-6. PubMed ID: 27599478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications.
    Saji VS; Choe HC; Brantley WA
    Acta Biomater; 2009 Jul; 5(6):2303-10. PubMed ID: 19289307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization.
    Yuan X; Zheng M; Ma L; Shen W
    Nanotechnology; 2010 Oct; 21(40):405302. PubMed ID: 20829566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite growth on anodic TiO2 nanotubes.
    Tsuchiya H; Macak JM; Müller L; Kunze J; Müller F; Greil P; Virtanen S; Schmuki P
    J Biomed Mater Res A; 2006 Jun; 77(3):534-41. PubMed ID: 16489589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Well-Aligned TiO₂ Nanotubes with High Length-Diameter Aspect Ratio by Anodic Oxidation Method.
    Ma Z; Gao J; Wu X; Xie Y; Yuan H; Shi Y
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5810-5816. PubMed ID: 29458645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid anodic formation of high aspect ratio WO3 layers with self-ordered nanochannel geometry and use in photocatalysis.
    Wei W; Shaw S; Lee K; Schmuki P
    Chemistry; 2012 Nov; 18(46):14622-6. PubMed ID: 23042381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anodic growth of large-diameter multipodal TiO2 nanotubes.
    Mohammadpour A; Waghmare PR; Mitra SK; Shankar K
    ACS Nano; 2010 Dec; 4(12):7421-30. PubMed ID: 21126101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertically aligned mixed V2O5-TiO2 nanotube arrays for supercapacitor applications.
    Yang Y; Kim D; Yang M; Schmuki P
    Chem Commun (Camb); 2011 Jul; 47(27):7746-8. PubMed ID: 21647524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.