BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22441806)

  • 1. Electronic conductivity of alkyne-capped ruthenium nanoparticles.
    Kang X; Chen S
    Nanoscale; 2012 Jul; 4(14):4183-9. PubMed ID: 22441806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoluminescence and conductivity studies of anthracene-functionalized ruthenium nanoparticles.
    Chen W; Pradhan S; Chen S
    Nanoscale; 2011 May; 3(5):2294-300. PubMed ID: 21494751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkyne-functionalized ruthenium nanoparticles: ruthenium-vinylidene bonds at the metal-ligand interface.
    Kang X; Zuckerman NB; Konopelski JP; Chen S
    J Am Chem Soc; 2012 Jan; 134(3):1412-5. PubMed ID: 22229968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraparticle donor-acceptor dyads prepared using conjugated metal-ligand linkages.
    Phebus BD; Yuan Y; Song Y; Hu P; Abdollahian Y; Tong QX; Chen S
    Phys Chem Chem Phys; 2013 Oct; 15(40):17647-53. PubMed ID: 24042335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraparticle charge delocalization of carbene-functionalized ruthenium nanoparticles manipulated by selective ion binding.
    Kang X; Chen W; Zuckerman NB; Konopelski JP; Chen S
    Langmuir; 2011 Oct; 27(20):12636-41. PubMed ID: 21894955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer.
    Hu P; Chen L; Kang X; Chen S
    Acc Chem Res; 2016; 49(10):2251-2260. PubMed ID: 27690382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial reactivity of ruthenium nanoparticles protected by ferrocenecarboxylates.
    Chen L; Song Y; Hu P; Deming CP; Guo Y; Chen S
    Phys Chem Chem Phys; 2014 Sep; 16(35):18736-42. PubMed ID: 25075931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing ruthenium-acetylide bonding interactions: synthesis, electrochemistry, and spectroscopic studies of acetylide-ruthenium complexes supported by tetradentate macrocyclic amine and diphosphine ligands.
    Wong CY; Che CM; Chan MC; Han J; Leung KH; Phillips DL; Wong KY; Zhu N
    J Am Chem Soc; 2005 Oct; 127(40):13997-4007. PubMed ID: 16201822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly and chemical reactivity of alkenes on platinum nanoparticles.
    Hu P; Duchesne PN; Song Y; Zhang P; Chen S
    Langmuir; 2015 Jan; 31(1):522-8. PubMed ID: 25511500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media.
    Hu P; Song Y; Chen L; Chen S
    Nanoscale; 2015 Jun; 7(21):9627-36. PubMed ID: 25952150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of intraparticle charge delocalization by selective complexation of transition-metal ions with histidine moieties.
    Kang X; Li X; Hewitt WM; Zuckerman NB; Konopelski JP; Chen S
    Anal Chem; 2012 Feb; 84(4):2025-30. PubMed ID: 22263655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The semiquinone-ruthenium combination as a remarkably invariant feature in the redox and substitution series [Ru(Q)(n)(acac)(3-n)](m), n = 1-3; m = (-2), -1, 0, +1, (+2); Q = 4,6-Di-tert-butyl-N-phenyl-o-iminobenzoquinone.
    Das D; Das AK; Sarkar B; Mondal TK; Mobin SM; Fiedler J; Zális S; Urbanos FA; Jiménez-Aparicio R; Kaim W; Lahiri GK
    Inorg Chem; 2009 Dec; 48(24):11853-64. PubMed ID: 19928984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the ruthenium-cumulene bonding interaction: synthesis and spectroscopic studies of vinylidene- and allenylidene-ruthenium complexes supported by tetradentate macrocyclic tertiary amine and comparisons with diphosphine analogues of ruthenium and osmium.
    Wong CY; Che CM; Chan MC; Leung KH; Phillips DL; Zhu N
    J Am Chem Soc; 2004 Mar; 126(8):2501-14. PubMed ID: 14982460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable electronic interfaces between bulk semiconductors and ligand-stabilized nanoparticle assemblies.
    Boettcher SW; Strandwitz NC; Schierhorn M; Lock N; Lonergan MC; Stucky GD
    Nat Mater; 2007 Aug; 6(8):592-6. PubMed ID: 17589515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge transport at the metal-organic interface.
    Chen S; Zhao Z; Liu H
    Annu Rev Phys Chem; 2013; 64():221-45. PubMed ID: 23298247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance elastic light scattering (RELS) spectroscopy of fast non-Langmuirian ligand-exchange in glutathione-induced gold nanoparticle assembly.
    Stobiecka M; Coopersmith K; Hepel M
    J Colloid Interface Sci; 2010 Oct; 350(1):168-77. PubMed ID: 20591439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organometallic complexes for nonlinear optics. 43. Quadratic optical nonlinearities of dipolar alkynylruthenium complexes with phenyleneethynylene/phenylenevinylene bridges.
    Rigamonti L; Babgi B; Cifuentes MP; Roberts RL; Petrie S; Stranger R; Righetto S; Teshome A; Asselberghs I; Clays K; Humphrey MG
    Inorg Chem; 2009 Apr; 48(8):3562-72. PubMed ID: 19298046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle films as electrodes: voltammetric sensitivity to the nanoparticle energy gap.
    Ranganathan S; Guo R; Murray RW
    Langmuir; 2007 Jun; 23(13):7372-7. PubMed ID: 17508765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures.
    Lim SI; Zhong CJ
    Acc Chem Res; 2009 Jun; 42(6):798-808. PubMed ID: 19378982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.