BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22441829)

  • 1. Dynamic response characteristics of hyperaemia in the human calf muscle: effect of exercise intensity and relation to electromyographic activity.
    Reeder EJ; Green S
    Eur J Appl Physiol; 2012 Dec; 112(12):3997-4013. PubMed ID: 22441829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hypoxia on the dynamic response of hyperaemia in the contracting human calf muscle.
    Donnelly J; Green S
    Exp Physiol; 2013 Jan; 98(1):81-93. PubMed ID: 22689444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive effect of acute sympathetic activation and exercise intensity on the dynamic response characteristics of vascular conductance in the human calf muscle.
    Green S; Cameron E
    Eur J Appl Physiol; 2015 May; 115(5):879-90. PubMed ID: 25479730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of age-specific influence on leg blood flow during incremental calf plantar-flexion exercise in men and women.
    Reilly H; Lane LM; Egaña M
    Eur J Appl Physiol; 2018 May; 118(5):989-1001. PubMed ID: 29502172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic responses during graded and constant-load plantar flexion exercise in middle-aged men and women with type 2 diabetes.
    Kiely C; O'Connor E; O'Shea D; Green S; Egaña M
    J Appl Physiol (1985); 2014 Oct; 117(7):755-64. PubMed ID: 25123197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Onset exercise hyperaemia in humans: partitioning the contributors.
    Wray DW; Donato AJ; Uberoi A; Merlone JP; Richardson RS
    J Physiol; 2005 Jun; 565(Pt 3):1053-60. PubMed ID: 15860535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical compression during repeated sustained isometric muscle contractions and hyperemic recovery in healthy young males.
    Osada T; Mortensen SP; Rådegran G
    J Physiol Anthropol; 2015 Oct; 34():36. PubMed ID: 26520798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Venous occlusion plethysmography vs. Doppler ultrasound in the assessment of leg blood flow kinetics during different intensities of calf exercise.
    Murphy E; Rocha J; Gildea N; Green S; Egaña M
    Eur J Appl Physiol; 2018 Feb; 118(2):249-260. PubMed ID: 29192355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative contraction force producing a reduction in calf blood flow by superimposing forearm exercise on lower leg exercise.
    Kagaya A
    Eur J Appl Physiol Occup Physiol; 1993; 66(4):309-14. PubMed ID: 8495691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brief periods of inactivity reduce leg microvascular, but not macrovascular, function in healthy young men.
    Vranish JR; Young BE; Stephens BY; Kaur J; Padilla J; Fadel PJ
    Exp Physiol; 2018 Oct; 103(10):1425-1434. PubMed ID: 30110509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. K+ as a vasodilator in resting human muscle: implications for exercise hyperaemia.
    Juel C; Olsen S; Rentsch RL; González-Alonso J; Rosenmeier JB
    Acta Physiol (Oxf); 2007 Aug; 190(4):311-8. PubMed ID: 17394572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex differences in time to task failure and blood flow for an intermittent isometric fatiguing contraction.
    Hunter SK; Griffith EE; Schlachter KM; Kufahl TD
    Muscle Nerve; 2009 Jan; 39(1):42-53. PubMed ID: 19086076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance exercise training improves age-related declines in leg vascular conductance and rejuvenates acute leg blood flow responses to feeding and exercise.
    Phillips B; Williams J; Atherton P; Smith K; Hildebrandt W; Rankin D; Greenhaff P; Macdonald I; Rennie MJ
    J Appl Physiol (1985); 2012 Feb; 112(3):347-53. PubMed ID: 21998269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Na
    Racine ML; Crecelius AR; Luckasen GJ; Larson DG; Dinenno FA
    J Physiol; 2018 Aug; 596(15):3371-3389. PubMed ID: 29603743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age.
    Meneses AL; Nam MCY; Bailey TG; Anstey C; Golledge J; Keske MA; Greaves K; Askew CD
    Physiol Rep; 2020 Oct; 8(19):e14580. PubMed ID: 33038050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Venous occlusion plethysmography versus Doppler ultrasound in the assessment of leg blood flow during calf exercise.
    Green S; Thorp R; Reeder EJ; Donnelly J; Fordy G
    Eur J Appl Physiol; 2011 Aug; 111(8):1889-900. PubMed ID: 21234593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid vasoregulatory mechanisms in exercising human skeletal muscle: dynamic response to repeated changes in contraction intensity.
    Rogers AM; Saunders NR; Pyke KE; Tschakovsky ME
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1065-73. PubMed ID: 16679396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of the hyperaemic response to passive leg movement in young, healthy women.
    Lew LA; Liu KR; Pyke KE
    Exp Physiol; 2021 Sep; 106(9):2013-2023. PubMed ID: 34216162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles.
    Evans C; Vance S; Brown M
    J Sports Sci; 2010 Jul; 28(9):999-1007. PubMed ID: 20544482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle.
    Rosenmeier JB; Hansen J; González-Alonso J
    J Physiol; 2004 Jul; 558(Pt 1):351-65. PubMed ID: 15155791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.