BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 22442569)

  • 1. Visual gravity influences arm movement planning.
    Sciutti A; Demougeot L; Berret B; Toma S; Sandini G; Papaxanthis C; Pozzo T
    J Neurophysiol; 2012 Jun; 107(12):3433-45. PubMed ID: 22442569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visuomotor adaptation to a visual rotation is gravity dependent.
    Toma S; Sciutti A; Papaxanthis C; Pozzo T
    J Neurophysiol; 2015 Mar; 113(6):1885-95. PubMed ID: 25505105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of vision and proprioception to arm movement planning in the vertical plane.
    Apker GA; Karimi CP; Buneo CA
    Neurosci Lett; 2011 Oct; 503(3):186-90. PubMed ID: 21889576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal reference frame for the planning of vertical arms movements.
    Le Seac'h AB; McIntyre J
    Neurosci Lett; 2007 Aug; 423(3):211-5. PubMed ID: 17709199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of visuomotor-map uncertainty on visuomotor adaptation.
    Saijo N; Gomi H
    J Neurophysiol; 2012 Mar; 107(6):1576-85. PubMed ID: 22190631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid online correction is selectively suppressed during movement with a visuomotor transformation.
    Gritsenko V; Kalaska JF
    J Neurophysiol; 2010 Dec; 104(6):3084-104. PubMed ID: 20844106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal integration of gravity in trajectory planning of vertical pointing movements.
    Crevecoeur F; Thonnard JL; Lefèvre P
    J Neurophysiol; 2009 Aug; 102(2):786-96. PubMed ID: 19458149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation between "where" and "how" judgements of one's own motor performance in a video-controlled reaching task.
    Boy F; Palluel-Germain R; Orliaguet JP; Coello Y
    Neurosci Lett; 2005 Sep; 386(1):52-7. PubMed ID: 15982810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowledge of performance is insufficient for implicit visuomotor rotation adaptation.
    Peled A; Karniel A
    J Mot Behav; 2012; 44(3):185-94. PubMed ID: 22548697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated turn-and-reach movements. II. Planning in an external frame of reference.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):290-303. PubMed ID: 12522180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpreting ambiguous visual information in motor learning.
    Dionne JK; Henriques DY
    J Vis; 2008 Nov; 8(15):2.1-10. PubMed ID: 19146286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New visuomotor maps are immediately available to the opposite limb.
    Carroll TJ; Poh E; de Rugy A
    J Neurophysiol; 2014 Jun; 111(11):2232-43. PubMed ID: 24598522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in object-oriented arm movements that precede the transition to goal-directed reaching in infancy.
    Lee MH; Ranganathan R; Newell KM
    Dev Psychobiol; 2011 Nov; 53(7):685-93. PubMed ID: 21432846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusion of visuo-ocular and vestibular signals in arm motor control.
    Guillaud E; Gauthier G; Vercher JL; Blouin J
    J Neurophysiol; 2006 Feb; 95(2):1134-46. PubMed ID: 16221749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate planning of manual tracking requires a 3D visuomotor transformation of velocity signals.
    Leclercq G; Blohm G; Lefèvre P
    J Vis; 2012 May; 12(5):6. PubMed ID: 22637707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the body rotation-induced torques on the arm during reaching movements: evidence from a proprioceptively deafferented subject.
    Guillaud E; Simoneau M; Blouin J
    Neuropsychologia; 2011 Jun; 49(7):2055-9. PubMed ID: 21458472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.