BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22442645)

  • 1. Neurogenesis drives stimulus decorrelation in a model of the olfactory bulb.
    Chow SF; Wick SD; Riecke H
    PLoS Comput Biol; 2012; 8(3):e1002398. PubMed ID: 22442645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top-down inputs drive neuronal network rewiring and context-enhanced sensory processing in olfaction.
    Adams W; Graham JN; Han X; Riecke H
    PLoS Comput Biol; 2019 Jan; 15(1):e1006611. PubMed ID: 30668563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early transformations in odor representation.
    Cleland TA
    Trends Neurosci; 2010 Mar; 33(3):130-9. PubMed ID: 20060600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.
    Zavitz D; Youngstrom IA; Borisyuk A; Wachowiak M
    J Neurosci; 2020 Jul; 40(31):5954-5969. PubMed ID: 32561671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circuit properties generating gamma oscillations in a network model of the olfactory bulb.
    Bathellier B; Lagier S; Faure P; Lledo PM
    J Neurophysiol; 2006 Apr; 95(4):2678-91. PubMed ID: 16381804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal circuits and computations: pattern decorrelation in the olfactory bulb.
    Friedrich RW; Wiechert MT
    FEBS Lett; 2014 Aug; 588(15):2504-13. PubMed ID: 24911205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural spine plasticity: Learning and forgetting of odor-specific subnetworks in the olfactory bulb.
    Meng JH; Riecke H
    PLoS Comput Biol; 2022 Oct; 18(10):e1010338. PubMed ID: 36279303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coding odor identity and odor value in awake rodents.
    Nunez-Parra A; Li A; Restrepo D
    Prog Brain Res; 2014; 208():205-22. PubMed ID: 24767484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse coding and lateral inhibition arising from balanced and unbalanced dendrodendritic excitation and inhibition.
    Yu Y; Migliore M; Hines ML; Shepherd GM
    J Neurosci; 2014 Oct; 34(41):13701-13. PubMed ID: 25297097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb.
    Díaz-Quesada M; Youngstrom IA; Tsuno Y; Hansen KR; Economo MN; Wachowiak M
    J Neurosci; 2018 Feb; 38(9):2189-2206. PubMed ID: 29374137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Newborn neurons in the adult olfactory bulb: unique properties for specific odor behavior.
    Breton-Provencher V; Saghatelyan A
    Behav Brain Res; 2012 Feb; 227(2):480-9. PubMed ID: 21843557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connectivity and dynamics in the olfactory bulb.
    Kersen DEC; Tavoni G; Balasubramanian V
    PLoS Comput Biol; 2022 Feb; 18(2):e1009856. PubMed ID: 35130267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic clusters function as odor operators in the olfactory bulb.
    Migliore M; Cavarretta F; Marasco A; Tulumello E; Hines ML; Shepherd GM
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8499-504. PubMed ID: 26100895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Recording of Dendrodendritic Excitation in the Olfactory Bulb: Divergent Properties of Local and External Glutamatergic Inputs Govern Synaptic Integration in Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2017 Dec; 37(49):11774-11788. PubMed ID: 29066560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New granule cells in the olfactory bulb are associated with high respiratory input in an enriched odor environment.
    Kamimura S; Masaoka Y; Yoshikawa A; Kamijo S; Ohtaki H; Koiwa N; Honma M; Sakikawa K; Kobayashi H; Izumizaki M
    Neurosci Res; 2022 Sep; 182():52-59. PubMed ID: 35636589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of odor representations by olfactory bulb microcircuits.
    Cleland TA
    Prog Brain Res; 2014; 208():177-203. PubMed ID: 24767483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors.
    Breton-Provencher V; Lemasson M; Peralta MR; Saghatelyan A
    J Neurosci; 2009 Dec; 29(48):15245-57. PubMed ID: 19955377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning rules and network repair in spike-timing-based computation networks.
    Hopfield JJ; Brody CD
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):337-42. PubMed ID: 14694191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of adult neurogenesis on olfactory bulb circuits and computations.
    Lepousez G; Valley MT; Lledo PM
    Annu Rev Physiol; 2013; 75():339-63. PubMed ID: 23190074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normalized Neural Representations of Complex Odors.
    Zwicker D
    PLoS One; 2016; 11(11):e0166456. PubMed ID: 27835696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.