These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 22442645)

  • 21. An olfactory recognition model based on spatio-temporal encoding of odor quality in the olfactory bulb.
    Hoshino O; Kashimori Y; Kambara T
    Biol Cybern; 1998 Aug; 79(2):109-20. PubMed ID: 9791931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is adult neurogenesis essential for olfaction?
    Lazarini F; Lledo PM
    Trends Neurosci; 2011 Jan; 34(1):20-30. PubMed ID: 20980064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visualizing olfactory learning functional imaging of experience-induced olfactory bulb changes.
    Fletcher ML; Bendahmane M
    Prog Brain Res; 2014; 208():89-113. PubMed ID: 24767480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adult neurogenesis promotes synaptic plasticity in the olfactory bulb.
    Nissant A; Bardy C; Katagiri H; Murray K; Lledo PM
    Nat Neurosci; 2009 Jun; 12(6):728-30. PubMed ID: 19412168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience.
    Kato HK; Chu MW; Isaacson JS; Komiyama T
    Neuron; 2012 Dec; 76(5):962-75. PubMed ID: 23217744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unsupervised learning and adaptation in a model of adult neurogenesis.
    Cecchi GA; Petreanu LT; Alvarez-Buylla A; Magnasco MO
    J Comput Neurosci; 2001; 11(2):175-82. PubMed ID: 11717533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice.
    Ross JM; Fletcher ML
    J Neurosci; 2018 May; 38(20):4623-4640. PubMed ID: 29669746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Computer modeling of mechanisms of the information processing in the olfactory bulb. II. Mechanisms of identification and short-term storage in the olfactory bulb: results of the computer experimentation].
    Voronkov GS; Izotov VA
    Biofizika; 2001; 46(4):704-8. PubMed ID: 11558383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disynaptic amplification of metabotropic glutamate receptor 1 responses in the olfactory bulb.
    De Saint Jan D; Westbrook GL
    J Neurosci; 2007 Jan; 27(1):132-40. PubMed ID: 17202480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transformation of odor representations in target areas of the olfactory bulb.
    Yaksi E; von Saint Paul F; Niessing J; Bundschuh ST; Friedrich RW
    Nat Neurosci; 2009 Apr; 12(4):474-82. PubMed ID: 19305401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamical mechanisms of odor processing in olfactory bulb mitral cells.
    Rubin DB; Cleland TA
    J Neurophysiol; 2006 Aug; 96(2):555-68. PubMed ID: 16707721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Odor enrichment increases interneurons responsiveness in spatially defined regions of the olfactory bulb correlated with perception.
    Mandairon N; Didier A; Linster C
    Neurobiol Learn Mem; 2008 Jul; 90(1):178-84. PubMed ID: 18406178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb.
    Sailor KA; Valley MT; Wiechert MT; Riecke H; Sun GJ; Adams W; Dennis JC; Sharafi S; Ming GL; Song H; Lledo PM
    Neuron; 2016 Jul; 91(2):384-96. PubMed ID: 27373833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of inhibition in a model of olfactory bulb reduces overlap in the neural representation of olfactory stimuli.
    Linster C; Hasselmo M
    Behav Brain Res; 1997 Mar; 84(1-2):117-27. PubMed ID: 9079778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Odor perception and olfactory bulb plasticity in adult mammals.
    Mandairon N; Linster C
    J Neurophysiol; 2009 May; 101(5):2204-9. PubMed ID: 19261715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-frequency oscillations are not necessary for simple olfactory discriminations in young rats.
    Fletcher ML; Smith AM; Best AR; Wilson DA
    J Neurosci; 2005 Jan; 25(4):792-8. PubMed ID: 15673658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Timescale-dependent shaping of correlation by olfactory bulb lateral inhibition.
    Giridhar S; Doiron B; Urban NN
    Proc Natl Acad Sci U S A; 2011 Apr; 108(14):5843-8. PubMed ID: 21436050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A stochastic model for interacting neurons in the olfactory bulb.
    Ascione G; Carfora MF; Pirozzi E
    Biosystems; 2019 Nov; 185():104030. PubMed ID: 31563745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network.
    Malvaut S; Saghatelyan A
    Neural Plast; 2016; 2016():1614329. PubMed ID: 26839709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.